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FOREWORD

The need for organizing the ICIDES sequence of conferences arose in my mind almost a
decade ago while noticing that there were'no established forums for the exchange of conceptual
ideas in the general field of inverse, semi-inverse, and direct design and optimization in
engineering sciences. There were neither specialized technical journals nor textbooks available in
this highly interdisciplinary field that rapidly grew with the availability of faster and larger
computing machines. Consequently, there were no technical courses in engineering programs that
would cover these design methodologies. The situation is starting to change, though, as a response
to increased interest on the part of industry which feels the pressure from the competitive global
market. ICIDES was envisioned as an open forum for experts and users alike to present their
methodologies and discuss their concepts.

The ICIDES sequence has experienced a steady growth in attendance, the number of
publications, and the international character of its audience, while maintaining high standards.

Locations Dates Papers Countries Sponsors

ICIDES-1 Univ. of Texas at Austin Oct. 17-18, 1984 31 9 UT-Austin
ICIDES-II Penn State University Oct. 24-26, 1987 32 9 NSF,ONR,PSU
ICIDES-III Washington, D.C. Oct. 23-25, 1991 48 15 NSF,ONR,NASA,PSU

Eac h contributed technical paper was reviewed by two colleagues without revealing to them
the identities of the authors. Although unusual, this process has stimulated more substantial andconstructive comments from the reviewers and has contrib t,-, 1h mpr..e...t. in the quality

of the accepted technical papers. Invited lectures at ICIDES-III form a unique collection of survey
articles that present a status report on the present state of the art worldwide.

ICIDES-III would not have been possible without financial support from NASA
Headquaners (Ms. Pamela Richardson and Mr. Louis Williams), ONR-Mechanics Division (Dr.
Philip Abraham and Dr. Spiridon Lekoudis), and NSF-Communications and Computational
Systems Program (Dr. George Lea). I would also like to thank my student assistants, Mr. Branko
Kosovic and Mr. Scott Sheffer for their help with the word processing of the conference
announcements. Finally, I would like to thank the authors and reviewers of the technical papers
and to the invited lecturers who contributed to the success of the ICIDES-Ill.

University Park, PA George S. Dulikravich
September 1991
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F REVIEW OF AERODYNAMIC DESIGN IN THE NETHERLANDS ]
by

Th.E.Labruj~re

National Aerospace Laboratory NLR

Anthony Fokkerweg 2
1059 CM AMSTERDAM
THE NETHERLANDS

SUMMARY

A survey is given of aerodynamic design activities in The Netherlands, which
take place mainly at Fokker, NLR and Delft University of Technology (TUD). The
survey concentrates on the development of the Fokker 100 wing, glider design at
TUD and research at NLR in the field of aerodynamic design. Results are shown
to illustrate these activities.

1.INTRODUCTION

in the Netherlands, activities in the field of aerodynamic design take place at
the aircraft factory Fokker, the aeronautical research institute NLR and the
Technical'University of Delft.

A well known product of these activities is the civil transport aircraft Fokker
100 (See fig.l.l). But no less successful is the ASW-24 glider designed by
Boermans at the Low Speed Laboratory of TUD in collaboration with Alexander
Segelflugzeugbau in Germany( See Fig.l.2 ).

Very often, new aircrafts result ftom modifying existing aircraft, aiming at
e.g. improvement of performance, adaption to changed market requirements or
improvement of economics in view of operating environment. In that way, the
Fokker 100 has been derived from the Fokker F28 ( see Fig.l.3. ) by means of
sometimes drastic modifications. Also, the gliders designed at Delft are the
result of continuous attempts to reach the limits of sailplane performance.

These developments would not have been possible iWithout the help of computation-
al tools which play an essential role in both the actual design process and the
analysis of wind tunnel measurements and also at the interpretation of flight
test data.

The present paper deals with the main aerodynamic design objectives pursued at
the development of the transport aircraft Fokker 100 and the glider ASW-24 and
the process followed to attain them. In conclusion, special attention will be
paid to research activities at NLR in the field of computatzonal fluid dynamics
in support of design developments.

2.THE FOKKER 100.

The Fokker 100 design will be illustrated by considering two of the main design
problems solved during development. A more complete and detailed account can be
found in Refs. I and 2.

The Fokker 100 wing has been derived from the F-28 wing, which is determined by
four wing sections connected with straight generators. The main objective or
a new wing design was improvement of the Mach drag rise characteristics. The F-

L 28 was originally d~signed for a lift coefficient of CL-0 .2 whereas the newI

design requirements lead to a CL=0.4 to 0.5 at which condition the transonici

drag increase of the F-28 wing is not negligible.
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Fpsable I a survey of the most important modifications that have been ]
mplemented successively, thus defining a number of new wing shapes which have

been analyzed by means of both computations and wind tunnel measurements.

The modifications applied to wing sections I and II in wing 4 resulted from a
computational study with the help of a viscous transonic flow code, which
predicted a significant improvement of the Mach drag rise characteristics as a
consequence of these modifications ( See Fig.2.1). This was fully confirmed by
means of wind tunnel measurements, though it appeared necessary to improve the
stalling characteristics of the outer wing.

Computational analysis led to the conclusion that the Mach drag rise character-
istics could be improved by a further modification of section I. Moreover, by
modifying section IV improvement of the outer wing stall behaviour was expected.
Test results for the thus defined wings 5 and 6 are presented in Fig.2.2
indicating a further improvement when compared with wings 3 and 4.

As a preliminary final step wing 8 was defined, combining a rearward chord
extension with rear camber. This modification led to a second improvement of the

drag rise characteristics as illustrated by Fig.2.3 for section II.

At that time, however, it appeared necessary to adapt the design goals to market
requirements in terms of an increase of'take-off weight. This led to the
definition of wing 10, which happened to exhibit a rather large drag rise at low
lift coefficients cruising conditions. Subsequent reduction led to the
definition of wing 11 (See Fig.2.4).

Modification of the lower leading edge of sections II and IV resulted in wing
11. The effect of this modification is shown in Figs. 2.4 and 2.5. And, finally,
modification of section II leading to the definition of wing 12 took care of the
design requirement with respect to the stalling behaviour.

In conclusion, a survey of the main modifications applied to the original F-28
wing is given by means of Fiz.2.6 where a comrarison is medR between the
definitive wing planform for the Fokker 100 and the F-28 wing planform and where
also the basic wing sections are compared. This figure shows that a large part
of the original F-28 wing has still been retained. The main differences are the

span extension and leading as well as trailing edge modifications. However, as
has been verified by means of wind tunnel measurements these modifications were

sufficient for attaining amongst other things the design goals with respect tc
high- and low speed drag, buffet onset boundary and stalling behaviour.
Another important design problem was the improvement of the stub wing with

respect to its drag characteristics. At the new cruising conditions the flow

around the original F-28 stub wing contained regions with supersonic velocities,

thus leading to undesirable wave drag. It appeared to be possible to reshape the
stub wing such that the flow remained subcritical over the entire range of
cruise lift coefficients.

Finally, some attention may be paid to the computer codes used during the design
process. A major role has been played by two transonic flow analysis codes i.e.
the 3D code XFLO-22 and a 2D viscous transonic flow code by means of which the
effect of the various wing modifications was predicted. The wing modifications
were based on earlier wing design computations, preceding the actual Fokker 100
wing design, by means of the constrained inverse code for the design of wings
with a given pressure distribution in subsonic flow of Ref.3. More recently this

L code has been extended for application to supercritical flow conditions (Ref.4). ]



3
Third Inteational Conferen on 1nverse Design Concepts and Optmizaton in Engineering Sciences
WCIDES-PP. Edtor: G.S. D!ih,-_vich W2nshontr D.C.. O-tobe - 1091

he wing design system is based on an inverse method of the residual correction ]
type, combining a direct flow solver for transonic flow with simple geometric
correction rules. In order to fulfil requirements from the structural
engineer's point of view, geometric constraints are taken into account.

The transonic wing-body code XFLO-22 (Ref.6) is an extension of the non-
conservative finite difference wing code FLO-22 (Ref.5) of Jameson and Caughey

modified to simulate fuselage cross-flow effects. This simulation is achieved
by replacing the boundary condition of zero normal velocity in the plane of
symmetry in the original code by a condition of prescribed non-zero normal
velocity, the latter being computed by means of the NLR panel method (Ref.7,8).
By means of post-processing viscous effects may then be estimated using the 3-D
laminar/turbulent boundary layer code BOLA (Ref.9).

An example of the usefulness of XFLO-22 is given in Fig.2.7 where a comparison
is made between calculated and measured (wind tunnel and flight test) pressure
distributions for two wing stations. It may be noted that a surprisingly good
correlation is shown. Presumably the applied condition of taking the trailing
edge flow tangential to the lower wing surface, when using a grid of 160 (chord)
x 32 (span) x 28 (normal) points, compensates for the absence of viscous
effects. The same kind of correlation is demonstrated in Fig. 2.8 where a
comparison is made between measured and prqdicted buffet onset boundaries.

For the design problem associated with the stub wing wfth its strong interaction
with the fuselage and the engine nacelle a design code was not available. The
problem was solved by combining results of the 2D analogue of the wing design
code with 3D panel method calculatiqns ( Ref.7). The success of this approach
may be illustrated by means of Fig.2.9 where a comparison is made between
calculated and measured stub wing'pressures.

3.THE SAILPLANE ASW-24

The ASW-24 i's a Standard Class Sailplane built by Alexander Schleicher
Flugzeugbau in Germany. The aerodynamic design of this glider was performed in
close cooperation between the manufacturer and the Low Speed Laboratory (LSL)
of Delft University of Technology (TUD). Detailed account of aerodynamic as well

as structural design is given in Ref.l0.

When designing a glider, the main objectives are maximizing the glide ratio at
the higher flight speeds and minirizing the rate of sink at the lower flight
speeds. The higher flight speeds are applied when flying from one thermal to
another, and the lower flight speeds are iised when climbing in a thermal.

A typical glider flight performance polar is shown in Fig.3.1 for the ASW-24.
It results from flight test measurements and computational analysis with respect
to its component parts.. From this figure it appears that the wing contributes
considerably to the drag, at higher flight speeds especially in consequence of
the profile drag. Accordingly, the history of glider design shows a continuous
search for low drag wing profiles, mainly by attempting to maximize the laminar
flow region on the airfoils.

When dtsigning airfoils for laminar flow with a view to practical application
the key problem is to avoid the appearance of laminar separation bubbles. These
bubbles cause pressure drag and have a detrimental effect on the subsequent
turbulent boundary layer such that a considerable drag increase results. Thus,
the design should be such that transition to turbulent flow occurs before the
laminar flow will separate.
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Fhere are a few alternatives to solve this problem,. One of these is Wbrtmann's
destabilizing region concept, the other is the application of some tripping
device in order to provoke transition to turbulent flow.

When following the destabilizing region concept the airfoil is shaped such that
in the region where laminar separation is expected to occur, a slightly adverse
pressure gradient is induced. This adverse gradient destabilizes the laminar
boundary layer causing transition and thus avoiding flow separation. Application
of a tripping device amounts to disturbing the boundary layer by means of
artificial roughness on the airfoil surface or by means of blowing.

Both alternatives have been used at the design of the airfoil DU84-158 applied
in the ASW-24. The destabilizing region concept has been applied at the upper
surface and a tripping device in the form of a so-called "zig-zag tape" has been
applied at 77% chord position at the lower surface. The measured pressure
distribution of Fig.3.2. shows a laminar separation bubble on the lower surface
at about 85% chord and its removal due to application of the zig-zag tape.
Transition to turbulent flow on the upper surface is triggered by the adverse
gradient at about 59% chord.

The effectiveness of the zig-zag tape is also shown in Fig.3.3 where measured
aerodynamic characteristics are given both 'for the clean airfoil and the taped
airfoil. The maximum lift is hardly influenced by the roughness, the stalling
behaviour is gentle and the drag reduction is considerable.

As is shown in Fig.3.1, at low speed climbing conditions, more than 50% of the
total drag is due to induced drag., So, it will be clear that reduction of
induced drag will be another major goal when designing sailplanes; wing planform
and aspect ratio being the main p~rimeters when optimizing for induced drag at
a given wing loading.

In the present case the wing planform has been chosen with the help of numerical
optimization studies based on lifting line theory with taper ratio and spanwise
position of taper ratio change 4s design variables. The aspect ratio has been
chosen in combination with the wiig loading on tha basis of cross country speed
optimization studies, for detatls of which the reader is referred to ref.10.

A third aspect of wing design that may be considered here, is the effect of wing
fuselage interaction. Applying the panel method of Ref.7 with the panel schema-
tization of Fig.3.4 the pressure di'stribution on the wing-fuselage combination
has been studied. Fig.3.5 shows the pressure distribution in a few wing sections
for two different angles of attack.

The typical modern glider fuselage has been designed such that the forebody fits
into the streamlines of the wing at higher lift coefficients in order to avoid
the occurrence of high suction peaks in sections near the fuselage ( Fig.3.5a).
This has, however, as a consequence that at high speed conditions (lower lift
coefficient) the cross flow effect -is increased (Fig.3.5b), which causes the
wing sections close to the fuselage to operate in non-optimal conditions. To
improve the flow conditions at the junction of the ASW-24, a small fairing with
7% chord extension has been applied where the wing is lofted towards a wing root
airfoil suitable for turbulent flow conditions. Nevertheless, improvement of the
wing fuselage junction is still the subject of continuing study.

In the past decades considerable progress in glider design has been made. This
may be illustrated by means of Fig.3.6, where the flight performance polar forj
the present design is shown in comparison with that of two predecessors. Thea
difference in performance is a consequence of the improvement of the aerodynamic
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[characteristics as illustrated by Fig.3.7 which is mainly due to the wing 1
profiles that have been applied.

In conclusion these profiles may be compared by means of Figs.3.8a,b,c , where
calculated inviscid pressure distributions are shown. From these pressure
distributions a rough estimate of the laminar flow region can be made, clearly
showing the backward displacement of the transition point resulting in a
decrease of the drag.

The DU84-158 airfoil has been designed with the help of the LSL computer program
for airfoil analysis and design ( Refs.12,13). This program is based on Timman's
conformal mapping method for inviscid flow (Ref.14) in combination with Thwaites
method for laminar and Green's method for turbulent boundary layer flow and the
Van Ingen e9-method for prediction of transition (Ref.15).

4.DEVELOPMENTS AT NLR

In support of aerodynamic aircraft design NLR has a continuing research program
for the development of CFD codes both for analysis and design. Gradually, as
will have become clear from the preceding sections the tools thus developed are
incorporated in the actual design processes followed in the industry. In the
present section, some attention will be paid to capabilities that have not yet
been ( fully) utilized for practical applications. Also, further contributions
of NLR to improvement of airfoil- and wing design will be considered.

4.1 AIRFOILS

For analysis and design of airfoils in both subsonic and transonic flow taking
viscous effects into account, the MAD computer program system has been
developed. On the ICIDES conference of 1984 Slooff has given a global descrip-
tion of the system as it was available at that time ( Ref.16).

Since then the system of Ref.17 has been extended by incorporating the transonic
design method of Ref.25 in combination with the transonic analysis method of
Refs.5 and 6. The general approach followed to solve the design problem has
remained the same. It is of the residual correction type where the actual design
problem is translated into an equivalent design problem of reduced complexity,
thus enabling the application of relatively simple inverse methods and it leads
to an iterative design process as depicted in Fig.4.1.
It is assumed that the design goal is formulated in terms of a target pressure
distribution and that an initial guess of the airfoil shape will be given. A
direct flow solver for either subsonic or transonic viscous flow is used for the
determination of the pressure distribution on the gi -n airfoil, and a
constrained inverse method is used to determine the possibl; required modifica-
tion.

An example of application to a subsonic design problem is deicribed in Refs.19
and 20.
It concerns the improvement with respect to drag behaviour of the wing-slat
configuration of Fig.4.2. As becomes clear from Fig.4.3 it has been found in
wind tunnel measurements that the flow around this airfoil shows early boundary
layer separation on the main wing upper surface at the take-off condition lift
coefficient C, = 2.1.

With the aid of the method of Ref.18 for the determination of viscous subsonic
flow around multi-element airfoils analysis calculations were made. From this
analysis it was concluded that reduction of the drag should be attempted by
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Feducing the extent of' the separation region. This implied that the adverse
pressure gradient on the wing upper surface had to be reduced.

As the basic airfoil geometry should not be altered when designing a wing-siat
configuration, the sole possibility to reduce the pressure gradient is to lower
the suction peak level on the wing nose, without however reducing the lift
coefficient at the same time.

These considerations led to specification of the target as depicted in Fig.4.4,
in terms of an equivalent potential flow pressure distribution. The main points
of interest are
(i) a decreased velocity peak on the main wing upper surface aiming at a delay
of boundary layer separation,
(ii) increase of expansion around the wing nose aiming at an increase of the
slat dumping velocity,
(iii) an increase of the slat dumping velocity aiming at increase of the slat
lift contribution,
(iv) an increase of the slat lower surface pressure level aiming at increase of
the slat lift and decrease of the slat drag.

Application of the design process depicted in Fig.4.1. led to the result
depicted in Fig.4.5. The. most striking geometry modification is the blunt nose
of the main wing resulting in a rather thin slat trailing edge. Application of
the viscous flow analysis method of Ref.18 to the new geometry produced the
pressure distribution shown in Fig.4.6 in comparison with that on the original
configuration.

Clearly two of the design goals 'have been attained according two these
calculations. The suction peak on th e main wing has been reduced and the dumping
velocity on the slat has been increased. Hardly visible is a slightly rearward
shift of the boundary layer separation point on the wing upper surface (it
amounts to about 2% of the local chord) and the pressure level at the slat lower
side has decreased instead of increased.

However, as the analysis method has not been developed for the treatment of
separated flow regions, the quantitative value of these results is questionable.
Moreover the results for the slat lower surface, modelled as shown in Fig.4.1
to simulate the existence of the separation bubble, are of course less reliable.
Therefore it was concluded that the results were sufficiently encouraging in
order to test the new slat geometry in the wind tunnel.

The measured Ci-a curves for both the -original and new configuration are
compared in Fig.4.7. Apparently C , has been retained and the increase of the

Cl-a slope indicates reduced viscous losses. This is confirmed by the Ct-Cd
curves shown in Fig.4.8 which also shows that at the present.design condition
(Cl = 2.1 ) a drag reduction of more than 30 % has been realized.

Another example of application of the MAD system will be presented in Ref.21.
It concerns the design of a medium speed laminar flow airfoil. As a first step
in the design process a target pressure distribution was specified. Here the
goal was to choose a pressure distribution such that at the upper side the
boundary layer would remain laminar over at least 60% of the chord.

The pressure distribution prescribed as target for the upper side of the airfoil
is shown in Fig.4.9 together with calculated Ree ( Reynolds number based on

momentum loss thickness). Reg, represents the Tollmien-Schlichting stability j
criterium and Ree, is the transition criterium according to Granville. The
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Falculations predict instability of the boundary layer for x/c > .14, but a 1
reasonable margin with respect to transition to turbulent flow is left until
x/c-.6. As a result of applying the MAD system, an airfoil was obtained which
produces the desired pressure distribution perfectly, as is shown in Fig.4.10.

From this example where, in connection with the laminar flow, special attention
had to be paid to the nose shape, it has been learned once again, that care has
to be given to the leading and trailing edge regions ( adaptation of the target
without adapting the design goals) in order to obtain convergence and in order
to produce realistic airfoil shapes.

Notwithstanding these difficulties the design was successful as may be
illustrated by means of Figs.4.11 and 4.12, where a comparison is made between
pressure distributions and Cl-Cd curves as measured in the wind tunnel and as
calculated by means of VGK, a 2D viscous transonic airfoil code (Ref.23,24),
which is an extension of the semi-conservative finite difference method of
Garabedian and Korn for inviscid transonic flow, weakly coupled with a boundary
layer code based on Thwaites method for laminar and Green's lag-entrainment
method for turbulent flow.

To conclude this subsection an application to wind turbine design may be
considered ( Ref.22). The objective was to design an airfoil with an increased
maximum lift over drag ratio. Starting point was a blade based on the NACA 4421
airfoil of which the stall behaviour was considered appropriate for control by
stall. Thus the airfoil design had to be done under the side condition that the
stall behaviour should remain approximately the same. Moreover, from structural
point of view, the thickness over chord ratio had to be at least 0.2.

An existing airfoil which could have been considered for application is the
Wortmann FX 84-W-218 airfoil because of its favourable lift over drag ratio. It
has, however, an unacceptable stall behaviour. Therefore it was concluded that
an airfoil should be designed combining the advantages of both the NACA 4421 and
the Wortmann airfoils.

Using CADOS (see section 4.3), a NACA 4421 pressure distribution has been
modified in order to specify a target pressure "distribution for the MAD system
( see Fig.4.13). The target pressure distribution should lead to a flow with a
laminar boundary layer in a larger region than at the NACA 4421 airfoil. On the
other hand the target laminar flow region is smaller than at the Wortmann
airfoil in order to avoid rash stall behaviour.

Application of the MAD system led to the NLR/VSH 8801 airfoil. This airfoil
produces the desired pressure distribution as is shown in Fig.4.14. The geometry
of the new airfoil is compared with those of the NACA airfoil and the Wortmann
airfoil in Fig.4.15. A comparison of the aerodynamic characteristics is made in
Fig. 4.16 which presents the calculated lift and moment-coefficient as function
of the aigle of attack and in Fig.4.17 which presents the Cl-Cd curves.

The new airfoil has a somewhat larger lift coefficient than the NACA airfoil.
The stall behaviour of both airfoils is approximately the same. For stall
controlled wind turbines a lift curve such as that of the Wortmann airfoil with
hardly any variation near stall is not useful. The maximum lift over drag ratio
of the new airfoil is higher than those of the other airfoils. From these
results it has been concluded that the design goal i.e. combination of the

L advantages of both reference airfoils has been met. j
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2 WINGS

Since the thin wing inverse panel method for design of wings in subsonic flow
became available at NLR in 1974, further developments have gradually increased
NLR's capabilities for wing design. To start with, the inverse method was
incorporated in the design system (Ref.3) for wings in subsonic flow, using the
inverse method for the determination of geometry corrections and the NLR panel
method (Ref.7) for analysis of the modified wings. Subsequently, this system was
extended for application to transonic flow using the XFLO-22 code of Ref.6 for
analysis and applying a 3D analogue of the defect pressure splitting technique
of Refs.25,26 for.adaptation of the geometry correction procedure to transonic
flow (Ref.27).

The practical applicability of the latter transonic wing design system may be
demonstrated by means of a reconstruction example presented in Figs.4.18,4.19.
Starting point is the well-known DFVLR-F4 wing for the present purpose attached
to a simple cylindrical body. The target pressure distribution represented by
the dashed line in Fig.4.19a is the pressure distribution as obtained by
applying XFLO-22 to the original F4/body geometry of Fig.4.18. An "initial
guess" of the geometry which is required at the start of the design process has
been obtained by distorting the original geometry. The pressure distribution
represented by the lines marked a is produced by this distorted configuration.

Application of the wing design system resulted after 6 iterations in the
geometry shown in Fig.4.19b in comparison with the original F4 wing geometry (
target). The corresponding pressure distribution is represented by the lines
marked b in Fig.4.19a. The target pressure distribution is reproduced near the
tip. In the other sections some~deviations are still present, especially in the
shock region. But the overall agreement between, final- and target pressure
distribution is satisfactory.

Fig.4.20 presents a functional breakdown of the algorithm. It follows the
residual correction approach in which the basic idea is to apply a simple fast
geometry correction procedure for determining estimates of the geometry to be
designed and an accurate method for analysis of the flow around the current
geometry.

In the present version of the design system flow analysis is performed by means
of XFLO-22 (Ref.6), a program system based on a combination of Jameson's code
FLO-22 (Ref.5) and the NLR panel method (Ref.7). With the aid of the latter
method it has been attempted to remove the limitation of FLO-22 to wing-alone
configurations. The usefulness of this method for engineering purposes has been
demonstrated and validated by comparison with results of wind tunnel tests for
a. number of wing-body configurations ( see Ref.6).

However, it was felt necessary to improve the accuracy of the.design system by
improving the accuracy of the analysis method , at the same time removing the
limitation to wing-alone in a more fundamental way. Therefore, it was decided
to develop a new code for transonic flow analysis. This Multi-component Aircraft
Transonic Inviscid Computation System ( MATRICS ) is based on full potential
theory applying discretizations according to the finite volume concept'
(Refs.28,29). It is applicable to wing-body configurations.

The next step in the development of a new analysis code will be the coupling of
MATRICS to a boundary layer calculation method in a ( strong ) interactive way.

L The subsequent incorporation of that code in the wing design system will be onej
of the steps towards the development of a system (WINGDES) for the design o
wings in viscous transonic flow.
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Fhe geometry correction procedure, for which a functional breakdown is given in 1
Fig.4.21, consists of two major steps. From the pressure defect i.e. the
difference between the target and the current pressure distribution, an
equivalent subsonic perturbation velocity distribution is derived using the
splitting technique of Ref.25, whereupon by means of an inverse panel method
geometry corrections are determined.

The pressure splitting technique applied to the pressure distribution in a wing
section distinguishes between regions with a subsonic and regions with a
supersonic flow behaviour. To this end a "critical" pressure coefficient is
defined and the assumption is made that subsonic theory should be applied in
regions where both target and current pressure distribution are "subcritical"
and supersonic theory if both pressure distributions are "supercritical".
(see Fig.4.22). Application of subsonic thin wing theory then translates the
subsonic pressure defect into subsonic perturbation velocities. Application of
supersonic wavy wall formulae leads to translation of the supersonic pressure
defect into geometric slope corrections which however, for the sake of
similarity in representation, are expressed in equivalent subsonic perturbation
velocities by means of thin airfoil analysis.

Some details of the constrained inverse panel method which' is applied for the
derivation of the geometry corrections from the equivalent perturbation
velocities, are given in Fig.4.23. It is essentially a linearized panel method
which utilizes on the mean wing plane a distribution of x-doublets for
representation of thickness effects and a distribution of vorticity for
representation of camber effects and on the body surface constant source panels.
Geometry constraints may be applied in the form of prescribed values of
thickness and/or camber weighted in order to create a desired balance. The
associated over-determined system bf equations is solved in a least square error
sense. By adding the squares of the residuals associated with the pressure
defects and the constraints, each multiplied with their specified weight factors
a functional is formed, from which by formal differentiation a new set of
equations is derived that is solved by a block iteration procedure.

The geometry correction procedure thus described is very fast as a consequence
of which the computing time needed for one iteration step is only slightly more
than for one analysis run, however in the leading edge region the thin wing
approximation to the real flow is not applicable and leads to difficulties when
leading edge modifications are pursued.

4.3.TARGET PRESSURE DISTRIBUTIONS

Many design methods, amongst them the residual correction methods of NLR, are
based on minimization of an object function formulated in terms of prescribed
(target) pressure distributions. This leaves the user with the problem to
translate his design goals in properly defined pressure distributions exhibiting
the required aerodynamic characteristics.

Though skilful designers are capable of producing successful designs, as has
been demonstrated in sections 2 and 3, the design efficiency can be improved by
providing the designer with tools for target pressure specification. To this end
two codes have been developed. SAMID (Ref.30) may be used for the selection of
spanload distributions leading to minimum induced and viscous drag taking into
account aerodynamic, flight-mechanical and structural constraints. CADOS
(Ref.31) may be used for selection of appropriate chordwise pressure distribu-

L tions. The latter code is an interactive optimization system for the solution
of minimization (or maximization) problems defined by the user with respect to
its object function, design variables and constraints.
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jAMID is based on lifting line approximations using the conservation laws of ]
momentum for determination of the induced drag. The viscous drag is approximated
for given airfoil characteristics by deriving expressions for the sectional
viscous drag in terms of the section lift coefficient using semi-empirical
relations and thin airfoil theory. Through variational calculus a set of
optimality equations is derived from the object function augmented with
constraint terms using Lagrange multipliers. Application of appropriate
discretization then leads to a system of linear equations for trailing edge
vortex sheet strengths and Lagrange multipliers.

Propeller slipstream interaction with the lifting surfaces may be considered as
well as long as it may be assumed that each propeller sheds a helical vortex
sheet not influenced by the presence of the wing and confined to a cylindrical
stream tube parallel to the free stream direction. The velocity distribution
inside the slipstream is assumed to be known. As an example of such an
application the results of Fig.4.25 are presented. This figure shows the optimal
spanwise circulation distribution for the propeller induced velocity distribu-
tion presented in Fig.4.24. Clearly the optimal distribution differs greatly
from the "clean wing" distribution. Application of this distribution would
restore much of the loss associated with the slipstream swirl.

Using CADOS for chordwise pressure distribution specification implies the
definition of a suitable object function and appropriate constraints reflecting
the sense in which the target should be optimal. But first of all an appropriate
pressure distribution representation should be chosen. Concentrating on
transonic flow and pioneering with application of CADOS a number of relatively
simple shape functions has been selected leading to a representation as
schematically depicted in Fig.4.26. This representation involves a limited
number of design variables in the'fbrm of coefficients and exponents.

As an example of the practical applicability of CADOS some results may be shown
of case studies using the above representation and determining drag by means of
boundary layer calculations based on Thwaites method for laminar and Green's
lag-entrainment method for turbulent flow.
The first example is a demonstration of the capability to design high lift
airfoils. The intention was to maximize lift by changing only the upper surface
pressure distribution for a fixed arbitrarily chosen lower surface pressure
distribution under the additional constraint that the flow had to remain
attached and subsonic everywhere on the airfoil.

Keeping Liebeck's results for the so-called turbulent rooftop in mind, at the
first optimization attempt the shape function coefficients were constrained to
producing a Stratford type pressure recovery. This resulted in the rooftop
solution of Fig.4.27 comparing reasonably well with Liebeck's solution as
presented in Ref.32. Application of CADOS with the upper surface pressure
distribution entirely free led to a solution with a slightly higher lift
coefficient represented by the dashed line in Fig.4.27. To conclude this
exercise the NLR airfoil design system of Ref.17 was applied to determine the
corresponding geometries. The results are presented in Fig.4.27, showing that
the second pressure distribution leads to a somewhat gentler airfoil shape.

The second example that may be presented here concerns transonic low drag
design. At first, calculations were performed in order to check the suitability
of the shape functions for representation of realistic transonic pressure
distributions. To this end CADOS was used to determine the best fit to a
pressure distribution calculated by means of the VGK code of Ref.24 for a given
airfoil.The result is presented in Fig.4.28 . Apparently the discrepancies are J
largest in the shock region and at the nose.
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Fubsequently it was attempted to determine a new target pressure distribution ]
aiming at a decrease of the drag with the "best fit" as starting point. Fig.4.29
shows the result, designated "new target". According to the CADOS boundary layer
calculations this target should lead to a drag decrease of 5 counts.

Again the NLR airfoil design system was applied for determination of a new
airfoil shape, upon which VGK was used for determination of the actual pressure
distribution. The latter result is presented in Fig.4.30 in comparison with the
original pressure distribution. The discrepancies between the shape function
representation and the actual pressure distribution mentioned above may be
responsible for the fact that here only 3 counts instead of 5 counts drag
decrease is predicted. Nevertheless, the present example may be considered as
illustrating the usefulness of CADOS in transonic airfoil design.

5.CONCLUDING REMARKS

A survey has been given of contemporary practice of aerodynamic design in The
Netherlands, focusing on airfoil and wing design. It will have become clear
that the application of analysis and design codes has become common practice in
aerodynamic aircraft design procedures.

As has been mentioned before, work is in progress at NLR to extend the design
system for wings in subsonic flow for application to wings of wing-body
combinations in viscous transonic flow. A somewhat longer term development is
the extension of this system to application for multi-point wing design. This
work has been started within a BRITE/EURAM project sponsored by the European
Community and aims at the development of a method for the design of wings in
transonic flow, such that at a number of different flow conditions the wing
(without changing the geometry) will operate according to preset requirements.
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TABLE I : The Fokker 100 wing development (Ref.l)

Wing 1 : The basic F-28 wing, defined by four wing sections connected with
straight generators

Wing 3 : Wing 1 with 0.75 m span extension ( defining section V)
Wing 4 : Wing -1 modified with :

forward extension of the chords of sections IJI and III
modification of the front part of sections I and II
1.5 m span extension

Wing 5 Wing 1 modified with :
1.5 % chord extension and modified front part of section IV
straight leading edge at outer wing defined by section II and IV
5 % chord extension of section I
1.5 m span extension

Wing 6 : As wing 5 but with 9% chord extension of section I
Wing 8 : Wing 5 modified with rearward chord extension and rear camber
Wing 10: Wing 8 modified with :

0.75 m span extension
straight leading edge between section III and V leading to
kinks at sections II and III
new front part of section IV

Wing 11: Wing 10 modified with :
new lower leading edge of sections III and IV

Wing 12: Wing 11 modified with :
new leading edge of section II

L j
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F AERODYNAMIC AIRCRAFT DESIGN METHODS
AND

THEIR NOTABLE APPLICATIONS

SURVEY OF THE ACTIVITY IN JAPAN
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Yoshinodai 3-1-1, Sagamihara, Kanagawa, 229, JAPAN

and

Susumu Takanashi
National Aerospace Laboratory
Jindaiji-Higashi 7-44-1, Chofu, Tokyo, 182, JAPAN

ABSTRACT

In the present paper, an overview of the aerodynamic aircraft-design methods and their
recent applications in Japan is presented, One of the design codes which was developed at the
National Aerospace Laboratory (NAL) and widely used now is mainly discussed, and hence,
most of the application examples are the results of the collaborative works between heavy
industries and National Aerospace Laboratory. Wide variety of applications in transonic to
supersonic flow regimes are presented. Although design of aircraft elements for external flows
are the main focus, some of the internal flow applications are also presented. Recent applications
of the design code using the Navier-Stokes and Euler equations in the analysis mode include the
design of HOPE(space vehicle) and USB(upper surface blowing) aircraft configurations.

INTRODUCTION

With the advent of supercomputers having fast processors and large memories,
CFD(computational Fluid Dynamics) is progressing at incredible speed. Three-dimensional
Navier-Stokes simulations, which were very rare ten years ago even for relatively simple body
configurations are now common at any conference on fluid dynamics[1,2,3]. Flow field
simulations over complex body configuration are not difficult task once the geometry data is
given. We can learn a lot of flow physics from the simulated results that may be helpful for re-
designing the body configuration. Although such simulated results give us a lot of information
about the flow field, they would not tell us how to modify the body configuration for the better
design. One way to do it may be a trial-and-error type approach where conducting a large
number of simulations is necessary, which is still not feasible even with advanced
supercomputers. So-called design programs for determining the optimum geometry may be as
useful as analysis programs simulating the given flow fields.

There has been a strong effort to develop both airfoil and wing design methods for many
years. Unfortunately, the progress is not as remarkable as analysis methods.This is true in Japan
as well as in the United States. CFD technology has been remarkably improved, last several years,
but on the other hand, no much progress was made for the design methods and code
development. Only one remarkable progress in Japan was the design method developed by
Takanashi at National Aerospace Laboratory in 1984. His method is "iterative correction method"

L based on the perturbation equations of potential flows. In this method, the geometry correction is
made iteratively to reduce the difference between the target pressure distributions and the
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F pressure distributions that is obtained by an analysis code. One of the advantages of this code is 1
that any analysis code can be incorporated because analysis code is sort of black box for the
geometry correction method. Analysis codes are not necessarily restricted to the potential codes.
Even the Navier-Stokes codes can be used although the convergence is not guaranteed. Because
of the flexibility and robustness of the code, it has been used for wide variety of applications.
Now, most of the aircraft industries in Japan use this computer code and applied it to the practical
problems.

In the present paper, Takanashi's design method and its applications are presented. Since
this is a paper giving an overview of the Japanese activity, only the conceptual explanation is
given about the method itself, and the focus is mainly laid on the demonstration of the
applications to a wide variety of the flow fields.

DESIGN METHODOLOGY

Background

There are several approaches for the design problems. One way may be the numerical
optimization using an analysis code. Wing design method was proposed by Hicks in 197614],
and the research has been extensively conducted since then. In this optimization technique, a
wing section with, for instance, minimal total drag under some constraints such as a specified lift
and maximum thickness is sought by using the analysis code and the optimization code
iteratively. Recently, Jameson[5] proposed an efficient.method using a control theory. There
exists so-called "inverse method" of wing design in which wing geometry is determined to realize
the specified pressure distributions. This type of approach was used for wing design by
Henne[6] and for wing-fuselage design by Shankar[7] for example. The approach used by
Takanashi may be different from either of the approaches above. This is an iterative residual
correction method similar to the works by Barger and Brooks[8], Davis[9], and McFadden[10]
for the two-dimensional problems. The advantage of this approach is that only minimum effort in
developing the geometry correction code is needed to decrease the pressure residual, while an
analysis code is retained in its original form. In the next section, the formulation is briefly
described.

Formulation of Inverse Problem and Iterative Procedure

Only a concept of the design method that was developed by Takanashi in 1984 is briefly
described. More details can be found in his original and the following papers[1 1,12,13].

First, inverse problem is defined. Here the nonlinear full potential equations are taken as
basic equations, and in the formulation process, small perturbations are assumed. Thus, the
applicability is restricted to the flow field without shock waves or with weak shock waves. After
some manipulations, integral equations that relate the geometry change and the surface pressure
change are formulated. Iterative design procedure is formulated using the integral equations
obtained above. Body (wing, wing-body complete aircraft etc.) surface is paneled into segments
and the integral equations are discretized and numerically solved to find the necessary amount of
geometry modification once the difference of required and calculated pressure difference is
defined. Since we have the target pressure distributions which is required, we can define the
difference using some analysis code.

The iteration process can be defined as follows. First, we assume initial body geometry,
L then calculate the surface pressure distributions using some analysis codes. Since we know the
require pressure distributions, we can calculate the difference between the required an calculated j
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F pressure distributions by a simple subtraction. Second, necessary body geometry change can be 1
calculated using the integral equations which are discretized. Improved body geometry is now
defined and the analysis code is once again used to calculate the pressure distribution in the
second approximation. The iteration process is schematically shown in Fig. 1. One significant
feature of this method is that analysis code is sort of "black box" and any type of analysis
methods can be used. The Euler, Navier-Stokes, even the experimental measured data can be
used to supply the pressure distribution data. They may be used so far as there occur no strong
shock waves and the difference between the target and calculated. pressure distributions is not
large. Although there is no guarantee for the convergence in the case of some analysis code such
as Euler and Navier-Stokes codes where perturbation between the geometry and surface pressure
may not be uniquely defined because of the strong nonlinearity, many examples shown below
indicate that the applicability of the present method is much wider than the theoretical prediction.

APPLICATION EXAMPLES

Transonic Wing Design

In Takanashi's original paper[11], applications to a couple of transonic wing design
problems were presented. One of them is shown here. Figure 2 shows the original geometry data
and the computed pressure distributions (dotted data). Also plotted is the target (specified)
pressure distributions (solid lines). The freestream Mach number is 0.74 and the wing planform
was fixed with 9.92 aspect ratio, 18.4 deg. sweep angle. The trailing-edge kink location is 30 %
semispan. The target pressure distributions were determined to realize the same chordwise
pressure distributions at any span station between the wing root and tip. Such pressure
distributions are usually called "isobar pattern" because straight lines appear on the surface
pressure contours over the entire wing surface. The chordwise pressure is determined by the two-
dimensional airfoil design code, and its characteristics were investigated by airfoil analysis and
wind-tunnel testings. Analysis code used in this example was "FL022", nonlinear full potential
code developed by Jameson. To avoid the monotonic increase of the thickness of the root section
in the iteration process, the root section profile was fixed throughout the iteration process in this
example.

Figure 3 shows the sectional wing geometry and the pressure distributions obtained after
ten iterations. The target pressure distributions are almost realized. In Fig. 4, the pressure
contours on the upper surface of the wing are plotted. Chordwise pressure distributions are
almost the same for any spanwise station except close to the wing root section. Note that the
computational time for the design mode is negligibly small compared to that of the analysis code
in the iteration process.

To show that the design code can be combined with any analysis code, several
computations for the design of transonic wings were carried out[12]. One of the computations
using the analysis code[14] developed at the National Aerospace Laboratory is presented next. In
this example, the boundary layer code also developed at the NAL[15] was incorporated. Only
four iterations were necessary for the convergence. The isobar pattern is realized from the root
section to the wing tip section in the computed result as is shown in Fig. 5. Mitsubishi Heavy
Industries (MHI) used Takanashi's code and designed many practical wings for transonic
transport aircraft[16]. As a design strategy, isobar pattern was required, and the final wing
geometry was determined considering the off-design requirements about buffet, pitch-up and
else. As an example, Fig. 6 shows the chordwise pressure distributions to be realized at each
spanwise station. The Mach number on the design point was 0.77, and the CL was 0.65. The
aspect ratio was 10, the sweep angle was 18 deg. and the tapered ratio 0.3 (see Fig. 7). The
initial and the final pressure distributions along with.the target pressure distributions are shown in

LFig. 8, and the final wing geometry where thickness and the twisted angle are modified near the j
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F tip to satisfy the off-design requirements is shown in Fig. 9. The wind tunnel experiment was 1
conducted to check the aerodynamic performance of the designed wing. The measured Cp
distributions are presented in Fig. 10. Reasonable agreement is observed between the target and
the measured pressure distributions. Figure 11 shows the comparison of the pressure contours on
the upper surface of the wing. Here again, good agreement is obtained between the computed and
measured contour plots even though small discrepancy is observed near the root and tip.

At the time of this design code development, there was a collaboration between JADC
representing Japanese industries and Boeing company to develop a new transonic aircraft. The
project was called 7J7 in the United States, and YXX in Japan. Although this project was retarted
because of the market change, there left is a lot of technology accumulations for the Research and
Development. Under this project, many wing configurations were designed by Mitsubishi Heavy
Industries again using Takanashi's code. Some of the designed wings were used for the
simulations using the Reynolds-averaged Navier-Stokes equations[ 17,18] and the computed
results were compared with the corresponding experiments[19] to confirm the aerodynamic
performance of the designed wings. These examples will be shown at the conference.

Airfoil Design Using Navier-Stokes Equations

As has been mentioned above, the analysis code is sort of a "black box" and it can use any
analytical method even though the convergence is not necessarily guaranteed. Hirose et al.
coupled Takanashi's design code with two-dimensional Reynolds-averaged Navier-Stokes
code[20]. With specifying the same pressure distributions at each spanwise station for large
aspect ratio wing, the three-dimensional design code was incorporated with the two-dimensional
Navier-Stokes code for the design of two-dimensional airfoil. One of the application examples is
shown here. Shockless supercritical pressure distributions at Cl= 0.6 was specified as a target
and the initial geometry was set up to have strong shock wave. The freestream Mach number is
0.75 at the Reynolds number 13 million. The initial, target and computed Cp distributions along
with the initial and final airfoil geometries are plotted in Fig. 12. The target Cp distributions are
almost realized in ten iterations.

Two Dimensional Transonic Cascades

Takanashi reformulated his original design code and developed a two dimensional cascade
design program in 1986. The analysis code in this case is a Euler code using explicit time
integration. Even after 10 iterations, fully converged solution was not obtained. However, the
pressure is becoming closer and closer to the target pressure on every iteration stages. The
solution after 10 iterations is presented in Fig. 13 along with the cascade geometry. Takanashi
insisted in his paper[13] that the convergence would'be much improved by optimizing the
parameters in the design process for cascade flows.

Additional Applications

Recently, with the rapid progress of supercomputers, the design code above was
combined with three-dimensional Navier-Stokes codes and applied to more difficult cases. Both
Mitsubishi (MHI) and Kawasaki (KHI) Heavy Industries applied it to the design of HOPE( H-II
Rocket Orbiting Plane). The HOPE is a space vehicle that NASDA (National Space Development
Agency) is currently developing. Both companies were interested in redesigning the tip fin of the
configuration. MHI analysed the transonic flow at Mach number 0.9 with 5 degrees angles of
attack and the Reynolds number 2 million[21]. They found by the Navier-Stokes simulations that
the flow field surrounded by the fuselage, main wing and tip fin became almost channel flow and

L strong shock wave and associated flow separation occured. The Takanashi's design code was j
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F iteratively used with the three-dimensional Navier-Stokes code and the good improvement was 1
obtained after five iterations. They used half a million of grid points for the Navier-Stokes
analysis and the computer time required for each iteration step was 5 hours for the analysis mode
and 0.2 hours for the design mode Thus, in total, 26 hours were necessary even with the Fujitsu
VP400, one of the most advance supercomputers at that time. The initial body configuration is
shown in Fig. 14 in terms of the computational grid. The initial and the final chordwise pressure
distributions on the tip fin are presented in Fig. 15 with the corresponding sectional geometries.
Although the target pressure is not precisely realized, there is obvious improvement such as
disappearance of the suction peak. The close-up views of the near-surface streamlines obtained
from the computed flow fields both for the initial and obtained configurations are presented in
Fig. 16. Shock wave is weakened and the flow separation on the tip fin surface disappears in the
final configuration.

Kawasaki Heavy Industries tried to modify the pressure distributions over the tip fin to
satisfy the buffet boundary by re-designing the tip fin using Takanashi's design code with the
Euler code[22]. About 200,000 grid points were used in the analysis mode and total computer
time for five iterations was about 5 hours. In this example, the freesteam Mach number is 0.9.and
the angle of attack is 6.5 degrees. The original and designed sectional geometries, and the initial
and final Cp distributions along with the target Cp are presented in Fig. 17. Remarkable
improvement is observed although the target Cp distributions are not realized also in this
example.

Kawasaki Heavy Industries also applied the design code for the redesign of the USB
(Upper Surface Blowing) wing configuration of the STOL[23]. The planform of the USB is
shown in Fig. 18. In this example, Isobar pattern is the target, but the wing section is fixed near
the nacelle and the tip to avoid resulted very thin wing section to weaken the shock wave. Figure
19 shows the sectional Cp distributions. The strong shock wave that appeared on the initial
configuration is weakened and the target Cp distributions are almost realized.

Another aircraft company named Fuji Heavy Industries developed their own design code
based on the Takanashi's method. They applied it to the design problem of wing-fuselage
combination[24]. The analysis code was full potential code. The target pressure distributions
were such that realize the isobar pattern on the wing surface and are the same as the initial ones on
the fuselage. The initial and final Cp distributions and the surface pressure contours are plotted in
Fig. 20. The computed Cp in the lower surface realizes the target Cp, but still some discrepancy
exists on the upper surface. However, compared to the initial Cp distributions, improvement is
obvious. The final configuration is shown in Fig. 21.

SUMMARY

An overveiw of the Aerodynamic aircraft-design methods and their recent applications in
Japan was presented. One of the design codes developed at the National Aerospace Laboratory
(NAL) is mainly discussed because of its popularity in Japan, and wide variety of applications
were presented from transonic to supersonic flow regimes. This design method uses inverse
design code and analysis code iteratively to realize the required pressure disbributions, and thus
any anaysis code can be us,.d. Some of the examples shown here used Euler and Navier-Stokes
code as an analysis mode. These application examples indicated the capability and feasibility of
the design code. The fact that many companies currently use this design code for practical
problems and obtain successful results proves it.

This paper is written based on the results that the first author has noticed. There may be

more activities in Japan t.at can not be included in the paper. Unfortunately many of the papers in

L the reference list are written in Japanese. However, some of the important papers such as j
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FTakanashi's original paper are written 'in English and the authors hope that the list of reference in 1
this paper is useful for any researchers for the design problems.
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F ON A GLOBAL AERODYNAMIC OPTIMIZATION

OF A CIVIL TRANSPORT AIRCRAFT

6. Savu, 0. Trifu
The Aviation Institute, Bd. Pacii 220,

77538 Bucharest, Romania

ABSTRACT

An aerodynamic optimization procedure, dedicated mainly to mi-
nimize the drag to lift ratio of a complete configuration: wing -
body - tail, in the presence of some engineering and logical res-
trictions is described. .An algorithm conceived to search the mi-
nimum of a hypersurface with 18 dimensions, which define an airc-
raft configuration, was developed, without using a gradient meth-
od. The obtained results, show that, at least, from the aerodyna-
mic point of view, the optimal configuration is one of canard 'ty-
pe, with a lifting fuselage.

I. INTRODUCTION

There are many arguments which plead for the using of a global
and multicriterial optimzation procedure to design a transport air-
craft. An usual practice, for the establishment of the aircraft's
shape, adopted especially by the prudents, is the statistical pro-
cessing of the data describing all the aircrafts of that class.
Finally, after years of research, design, manufacture, testing
and certifying, an out - of - date aircraft results, at least with
two generations behind: one which was in service when the design
of the new aircraft begun, and the second, which started at the
same time, but has used the latest research results correctly
iorecsted.

To predict exactly the needs in the domain of passengers air
transport, for the date when the new built aircraft will operate,
taking into account all the economical, social and scientific
conjunctures, a global and multicriterial optimization procedure
is required. A new-aircraft becomes competitive versus other air-
drafts of its class, if the fuel consumption reduction is obtai-
ned not by affecting the passengers security and comfort and by
adding laborious maintenance operations. Following these princi-
pial ideas, in the present paper we have tried to optimize, only
from the aerodynamic standpoint, a short / medium - currier con-
figuration aircraft for moderate subsonic speeds.

Here, by "optimal configuration" we understand the configura-
tion which gives the best answer to a certain purpose. A more
realistic objective function to be minimized in the presence of
the engineering and airworthiness requirements, can lead to a
competitive aircraft, providing benefits, both for passengers and
ompanies.

-J
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Another argument which demands the adoption of a global opti-
mization procedure in the design process is the paradox, valid at
least as far as our personal experience is concerned, that while
aerodynamics, thermodynamics and stress analysis use the most soph-
isticated computing methods, their results are used mainly to deci-
de whether a previously shaped by an "all experienced" project
authority configuration is competitive, and not from to begining
in the process of giving that configuration the best shape for a
certain purpose.

II. THE AERODYNAMIC ANALYSIS

For the global aerodynamic characteristics (CL, CD, Cm) of a
complete wing - body - tail configuration, a panel method E1)
was used. Two rather hard approximations were adopted in order to
ensure minimum CPU time for the analysis procedure:

a) Following the idea introduced in [2), the configuration
is replaced by its horizontal projection (plane xOy "shadow"). The
entire thin surface of this projection is divided into a number of
triangular or quadrilateral panels, associated, each of them, to
a horseshoe vortex filament.

b) For the friction drag, the flat plate assumption is ado-,
pted and consequently, on the wetted area the friction coefficient
Cf is calculated as a function.of the Reynolds number on each sur-
face strip (without detachment).

The theoretical results obtained on the idealized configura-
tion of Fig. 1.b. were compared with the experimental data mea-
sured in the Trisonic Wind Tunnel of the Aviation Institute of
Bucharest, Romania, on a calibration model (Fig. 1.a).

The comparative diagrams CL, CD, Cm versus incidence (Fig.2)
demonstrate that, in the domain of the small incidences, the ana-
lysis is in good agreement with the experiments. This meets our
interest because the above - mentioned optimization will be per-
formed at the cruise regime.

III. THE OPTIMIZATION PROCEDURE

Considering the results of the aerodynamic analysis as accep-
table, the corresponding algorithm can be included into an opti-
mization loop.

A generic aircraft configuration was defined by 18 geometrical
parameters (Fig. 3) as follows:

x1 - the span of the surface I
x2 - the chord ratio of the surface I
x3 - the root chord of the surface I
x4 - the span of the surface II
x5 - the chord ratio of the surface Il
x6 the logitudinal position of wing apex

x7 the logitudinal position of the horizontal tail apex
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x8 - the wing span
x9 - the wing chord ratio
xlO the chord ratio of the horizontal tail
xll - the span of the horizontal tail
x12 - the wing sweep angle
x13 - the horizontal tail sweep angle
x14 - the root chord of the horizontal tail
x15 - the incidence of the surface I
x16 - the incidence of the horizontal tail
x17 - the wing incidence
x18 - the root chord of the wing

The geometrical characteristics of the vertical tail and the di-
hedral angle of the wing were done as input data.

The incidence of the surface II was assumed equal to that of the
surface I.

These 18 parameters are the 18 dimensions of a hypersurface, des-
cribed by the objective function "F" which represents a sum of cri-
teria of minimization.

Performing a statistical evaluation over a class of 30...50 pas-
senger aircrafts, the overall mass of an aircraft was deduced to
be estimated by:

G = 100*Npax + Ka!Sa + Kt*(Sht + Svt) +Kf*Sf + Goi ( 1 )

where:
Npax - the number of the passengers
Sa - the effective wing area
Sht - the effective horizontal tail area
Svt - the effective vertical tail area
Sf - the xOy projected area of the fuselage
Goi - the inert mass of the aircraft ( SY 7700 daN for a

50 pax. and = 5500 daN for a 30 pax. aircraft)
Ka - the specific weight of the wing (! 58.3 daN/m )
Kt - the specific weight of the tails (S 33.8 daN/m )
Kf - the specific weight of the fuselage (! 40 daN/m )

In the present study the criterion of optimization was related
to the minimizaton of the CD/CL ratio satisfying simultaneously the
following constraints:

- the pitching moment My with respect to the gravity center
must be zero or very close to this; the position of the
gravity center is recalculated every time the configura-
tion changes.

- the lifting force must be equal to the overall weight of
the airplane in cruise flight.

- the position of the wing and tails apexes must be !oca-
ted within the fuselage length.

because "in an aircraft, the main part of the structu-
L re's weight is given by the material which ensures the
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bending moment at the wing-body embeding" [33, an impor-
tant restriction was to put a limitation on the bending
moment at the wing-body junction. In the absence of this
constraint the wing has the tendency to get a quite lar-
ge aspect ratio, typical for sailplanes.

There are many objective functions Fi(X) for a class of aircra-
fts which can be minimized or maximized. For example, E43, with
only four parameters (wing area, sweep angle, aspect ratio and the
relative thickness of it's airfoil) a configuration was optimized
with four objective functions:

FI(X) - ramp weight (minimize)
F2(X) - mission fuel (minimize)
F3(X) - lift to drag ratio at constant cruise Mach number

(maximize)
F4(X) - range with fixed ramp weight (maximize)

or some combination of these objective functions.
Mathematically the optimization procedure means to search and

find the minimum of the above-mentioned hypersurface in the pre-
sence of a number of given restrictions. The minimization problem
with the restrictions "g(X)" is transformed into one without res-
trictions using "the penalty functions method" E5]. Each restric-
tion is associated with a penalty function. If one restriction is
violated, the corresponding penalty function is set to a great va-
lue; thus the objective function becomes greater (far from mini-
mum). If the restriction is satisfied, the penalty function is set
to zero: so it doesn't affect the value of the objective functioi
F(X).

F(X) = CD/CL + -g(X) = minimum (2)

X = X( x, ..... ,x18) ( 3 )

For the effective searching of the minimum of the objective
function F(X) the "one dimensional searching method" was aGopted
E53.

First, for the "starting configuration" (meaning the configura-
tion determined by the initial values of the 18 optimization para-
meters) a first value of the objective function is calculated.

Than, one of the parameters is altered by a step "r", while all
the others are kept constant:

xi= x + r.xi  (4)

0 < r < 1

The aerodynamic analysis module is called and the value of the
objective function F(X) is computed. If its value is smaller than
the previous one the alteration of the parameter "xL" is continued
until the value of F(X) begins to rise. In that moment the parame-
ter xL is altered with -r.xE and the process of parameter xLIalte-

L ration is initiated (Fig.4). When the optimization loop, 
contai-

ning all the 18 parameters is ended, the procedure is repeated wi
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F refined r, as long as r is superior to a selected error level.
The major disadvantage of this method is that a local minimum is

usually reached by altering only some of the parameters and it is
almost impossible to leave it. Besides of the parameters hierarcy,
which is not so easy to establish, the procedure was modified in
two different ways, in order to avoid the local minima:

a. At a certain value r the steps towards the minimum were
limited at only two per parameter, even if the value of the objec-
tive function is still decreasing (Fig.5a).

b. For every parameter the sign of r is determined for
which the objective function F(X) decreases. Then, all the parame-
ters are simultaneously altered as long as F(X) decreases. When an
increase in the value of F(X) is noticed the sign determination
process is initiated again, followed by another phase of block al
teration of all the parameters (Fig.5b). In this way, the aerody-
namic analysis module i.s called once for a configuration resulted
from-the simultaneous alteration of all the parameters, thus sav-
ing computer running time. This modified version of the optimiza.
tion procedure is somewhat similar to a gradient method but it do-
esn't need the calculation of the parameter's gradient vector.

IV. RESULTS AND DISCUSSION

The optimization procedure described above was transferred into
a FORTRAN computer code and several tests were performed to cer-
tify its validity.

Among these tests, for example, the "FOKKER 27 - Friendship"
airplane, quite repreentative for the 50 seats class, was adopted
as a starting configuration in the idealized manner represented
in Figure 6, by the lowest possible number of panels, to permit
a fast aerodynamic analysis.

Denoting by "classic configuration" the wing-tail arrangement
in which the wing is placed ahead of the tail and by "canard
configuration" the well known tail in front of the wing arran-
gement, the optimzation computer code was applied and the resul-
ts finally obtained are illustrated in Figures 7-9.

It can be noticed (Figure 7) that the aerodynamic (CL - CD)
characteristics of the classic-optimized configuration are not much
different from those classic - initial configuration, this pro
ving that the F-27 airplane is aerodynamically well designed.

In the same time, the canard - optimized configuration has ob
viously superior aerodynamic characteristics, when compared to
the initial (unoptimized) canard configuration (Fig. 8) and even
compared to the classic - optimized configuration (Fig. 9).

During the optimization process an interesting fact was consi
dered to be the tendency of the fuselage to widen its rear end,
taking a shape somewhat similar to a small aspect ratio gothic
delta wing, thus increasing its contribution to the global lift
of the airplane.

We must stress that the aerodynamic analysis module and even
the optimization algorithm used in the optimization procedure ex-

L J
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Fempled here are, of course, not the best tools according to to-
day's achievements, and any improvements in these directions co
uld lead to better results at the end of an optimzation loop.
Our choice was determined by the inherent limitations set by the
presently available to us, computer equipment.

The CYBER 170/720 computer was used to perform the calculations
which lead to the results presented here. A single call of the
aerodynamic analysis module requires about 3 seconds CPU time for
an idealized configuration of 40 panels (Fig. 6). To reach the
optimum shape, at the moment when the relative error on "r" is
less than 0.0001, some 260-300 calls of the aerodynamic analysis
module are usually necessary.

The optimization code was used to define some of the principal
features of the external shape for a few other short/medium ran-
ge commuters.

Such an example, reffering an airplane with a 70 passengers ca
pacity, flying at 650 km/h, 6000 m of altitude, is represented in
Figures 10 a,b. The thickness was added to complete the shape of
the idealized optimum configuration. Such a "thick" configuration
is suitable for a much more accurate aerodynamic analysis, perfor-
med with better computer codes and even in the wind tunnel, in
order to obtain a realistic final verdict on the optimization pro-
cedure and its results. The rear end wide fuselage is quite noti
ceable. Apart the aerodynamic gains, this type of fuselage can
provide the passengers a better comfort, giving the opportunity
for a cabin arrangement similar to that of a wide body airplane
(Figure 11).

An indirect confirmation of these solutions, analysed since
1988, [6], was offered by a recently published paper E7], which
reportss that studies are made to use an elliptical fuselage for
a long range, high capacity airliner.
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Fig.l.a. The calibration mo- Fig.1.b. The idealized geometry
del for wind tunnel testing, for panel method calculation.
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Fig.2. Comparison experimen- Fig.3. A generic configuration
ti-theory for test case 1.a. defined by 18 parameters.
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Fig. I0.b Another general view of the optimized configu-
ration of Fig. 10.

Fig11 Apossible seats arrangement in a cabin of an opti-L Fig11. A mized short/medium currier airplane.j
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ABSTRACT

The Modified Garabedian-McFadden (MGM) design procedure was incorporated into an
existing 2D multigrid Navier-Stokes airfoil analysis method. The resulting design method is
an iterative procedure based on a residual-correction algorithm and permits the automated design
of airfoil sections with prescribed surface pressure distributions. The new design method, MG-
MGM, is demonstrated for several different transonic pressure distributions obtained from both
symmetric and cambered airfoil shapes. The airfoil profiles generated with the MG-MGM code
are compared to the original configurations to assess the capabilities of the inverse design method.

INTRODUCTION

The aerodynamic design of aircraft components is often carried out by means of one of the
following four approaches: a) cut-and-try analysis, b) indirect methods, c) optimization techniques,
and d) inverse design techniques. Unlike the cut-and-try method, the latter three design techniques
are far more automated, and can significantly reduce the overall engineering effort and calendar
time required for developing aircraft components and configurations with improved aerodynamic
performance or aerodynamic interference characteristics.

A common design approach is to specify, a priori, surface pressure distributions that have fa-
vorable aerodynamic characteristics at given freestream conditions. For example, an appropriately
chosen pressure distribution can be used to achieve certain desired lift and moment coefficient
goals, while a "weak-shock" or "shock-free" distribution can be used to minimize wave drag
performance penalties. The automated design procedure is then used to generate, as efficiently
as possible, the configuration geometry which will cause the specified pressures to exist on the
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designed component. Obviously, the use of these automated design methods requires that the
aerodynamicist can specify, a priori, the desired pressure distributions for a particular application.

The most widely used aerodynamic design procedures for transonic-flow applications seem to
be based upon potential-flow Computational Fluid Dynamics (CFD) methods. 1- 5 This trend is most
likely due to the relative low cost, in terms of computer-resource requirements, that is demonstrated
by CFD methods based on the Transonic Small Disturbance (TSD) equation or the Full Potential
equation (FPE). In the past decade, however, considerable interest has been demonstrated in the
use of higher-order CFD methods such as the Euler equations and the Reynolds-averaged Navier-
Stokes equations (RANS) for aerodynamic analyses in a variety of applications. Thus, there is
now an increasing interest in also developing design procedures based on these higher-order CFD
formulations. 6-10 If used during the design process, these higher-order CFD methods will help the
aerodynamicist to account for the occurrence of fluid dynamic effects or phenomena which are
not routinely predictable using potential flow methods.

In reference 11, Garabedian and McFadden described an inverse aerodynamic design procedure
which they demonstrated using an existing FPE aerodynamics code. Their design method is based
on a residual-correction algorithm, which we will refer to here as the GM method, and can be
used to generate aerodynamic surfaces with prescribed surface pressure distributions. In reference
12, Malone, et al. presented a Modified Garabedian McFadden (MGM) design algorithm that
removed some limitations of the original GM technique. These authors applied the new MGM
design method, also using FPE aerodynamic analysis codes as a basis, to airfoil, axisymmetric
nacelle inlet, and 3-D nacelle inlet design problems. Later, Hazarika 13 and Sankar used a FPE
CFD method to apply the MGM procedure to the design of blended wing-body configurations.
In a recent effort, Malone, et al. 14 described the first use of the MGM residual-correction design
algorithm coupled with a 2-D Navier-Stokes solution procedure. Subsequently, a similar viscous-
flow design procedure using MGM was presented by Birckelbaw 15, and new applications of MGM
to multi-element airfoils using unstructured grids are under development.1 6

The objective of the present research was to develop an accurate design method for viscous,
attached-flow, design problems which might be beyond the capability of potential-flow or Euler
methods, even those using interactive boundary-layer theories. Because the aerodynamic designer
normally seeks attached flow conditions, the method to be described is not expected to handle
separated flow design problems. However, by virtue of the fact that a Navier-Stokes method forms
the basis of the present procedure, the possible occurrence and extent of separated flow regions
can be directly computed and noted by the designer during the design process.

The following sections of this paper will describe the multigrid Navier-Stokes computational
procedure, the MGM design algorithm, implementation of the design procedure, and will also
present the results of several sample airfoil design problems.

NAVIER-STOKES SOLUTION PROCEDURE

The two-dimensional Navier-Stokes procedure used in the present work was originally de-
veloped by Swanson and Turkel.17 Their method solves the Reynolds-averaged form of the full
Navier-Stokes equations (neglecting body forces and heat sources) on a body-fitted computational
grid. The mathematical formulation in generalized coordinates consists of a non-dimensionalized
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set of equations cast in a strong conservative form:

Qt + D + Eq =fA Re(G + H,)()

In Eq. (1), Q is the vector of conserved flow variables, which are themselves combinations
of the usual primitive variables, density (p), the components of fluid velocity (u, v), and the fluid
total energy (e). The quantity M, is the freestream Mach number and, Rec is the Reynolds
number. The vectors D and E are the inviscid flux vectors in the and t coordinate directions,
respectively. Also, the vectors G and H are the viscous flux terms in the corresponding coordinate
directions. The techniques used to solve Eq. (1) are given in Refs. 17, 18, and 19. Here we
present only a brief description of the Navier-Stokes solution procedure.

The spatial derivatives in the time-dependent Navier-Stokes equations are approximated
with central differences. A cell-centered finite-volume technique is used to obtain the spatial
discretization. For sufficiently smooth meshes the discretizations are second-order accurate.
Adaptive numerical dissipation terms are appended to the resulting semidiscrete formulation.
These terms, which are a blending of second and fourth differences, are included to provide
shock capturing capability and to give the necessary background dissipation for convergence. In
smooth regions of a flow field the dissipation terms are third order. The semidiscrete equations
are integrated in time with a modified five stage explicit Runge-Kiitta scheme. On the first, third,
and fifth stages there is a weighted evaluation of the dissipation terms, which results in a good
parabolic stability limit. The physical diffusion terms are evaluated only on the first stage and
frozen for the remaining stages, without compromising stability. The decoupling of the temporal
and spatial discretization makes the scheme amenable to convergence acceleration techniques,
which are very beneficial in the computation of steady flows.

Three techniques are employed to accelerate convergence to steady state. The first one is local
time-stepping, where the solution at any point in the domain is advanced at the maximum time step
allowed by stability. This results in faster signal propagation, and thus, faster convergence. The
second technique is variable coefficient implicit residual smoothing. It can be regarded as simply
a mathematical step applied after each Runge-Kutta stage to extend the local stability range. The
third technique is multigrid. A multigrid method involves the application of a sequence of meshes
to a discrete problem to accelerate convergence of the time-stepping scheme. Successively coarser
meshes can be generated by starting with the desired fine mesh and eliminating every other mesh
line in each coordinate direction. An equivalent fine grid problem is defined on each coarse grid.
Appropriate operators are introduced to transfer information between the meshes. In the method
applied here a fixed W-type cycle is used to execute the multigrid strategy. The efficiency of the
multigrid process depends strongly upon effective high frequency damping characteristics of the
driving scheme. Such damping behavior is provided by the five stage Runge-Kutta scheme. The
good smoothing of the highest frequencies on the coarser meshes allows rapid removal of the low
frequency errors in the fine grid solution. There are two additional advantages of the multigrid
method. First, less computational effort is required on the coarser meshes. Second, information
is propagated faster on the coarser meshes due to larger allowable time steps.

Figure 1 presents typical computed lifts and moments for an NACA 0012 airfoil to demonstrate
the capability of the multigrid algorithm for aerodynamic analysis applications. Turbulence closure
was obtained with the Baldwin -Lomax model.
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MGM DESIGN PROCEDURE

The MGM design method can be classified as a residual-correction technique, in which the
residuals are the difference between the desired speed distribution and the computed distribution.
Over the past decade a number of residual-correction methods have been developed, such as the
"wavy-wall" approach of Davis.20 The methods differ primarily in the manner in which changes
in residual are related to changes in surface shape. The MGM algorithm itself consists of an
auxiliary PDE that is solved for incremental changes in surface coordinates during each design
cycle. The final aerodynamic shape is approached in a stepwise fashion through a cyclical iteration
between the flow solver and the MGM algorithm.

Mathematical Formulation

The MGM auxiliary PDE is heuristic in derivation and assumes that changes in surface
pressures are proportional to changes in airfoil surface slopes and curvatures. For two-dimensional
flow about an airfoil configuration, the auxiliary equation is given by

FoS, + F1Sj1 + F2Sxx = t (2)

where R is the residual, defined as ft = q- q,. The quantities qc and qt are the computed
and target speed distributions, the coordinate x is the usual cartesian coordinate taken here to lie
along the airfoil chordline, and the coefficients F0, F1, and F2 are constants chosen to provide
a stable iterative process. Figure 2 shows how this auxiliary equation is typically incorporated
into existing flow solution procedures. The computed surface velocities are normally obtained
from partially converged numerical solutions to the flow equations under consideration at a given
value of time, t. During the design process, as qc approaches qj, the right-hand side of Eq. (2) is
reduced, and subsequent solutions of the auxiliary equation yield minimal changes in the airfoil
surface coordinates.

Next, Eq. (2) is written in terms of a correction to the airfoil coordinates, AS, by using the
temporal derivatives and choosing At = 1, so that Eq. (2) can then be written as:

FroAS + FI(AS), + F(AS)=X = R (3)

Numerical Solution Procedure

The auxiliary PDE is solved by writing finite-difference expressions for each term of Eq.
(3). The computational grid used to solve this equation is the same grid used for the fluid-
dynamic equations, which for the present Navier-Stokes solver, is an algebraically generated
C-grid topology. Equation (3) is solved only along the airfoil surface, so that only the grid-line
clustering in the x or streamwise direction is of importance.

Assuming that there are a total of N computational points on the airfoil surface, Eq. (3) is
written for each of these points, i, where 1 < i < N. A typical equation evaluated at the i th
point on the surface is

AiA~1'+ + BiAY + C,AY,- = Ri (4)
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The coefficients A,, B, and C, are evaluated by means of standard finite difference expressions,
and AYi is the incremental change in surface coordinate, AS, at the i th computational point.
Equation (4) is evaluated at each point, i, around the airfoil surface, leading to a system of
equations with N unknowns, the AY, values. At each point on the aerodynamic surface, Al', is
coupled to values at each neighboring point. The resulting algebraic equations form a tridiagonal.
system that is solved for valuesof AY using the Thomas algorithm. 21

The design cycle is completed by updating the previous surface geometry using the new
values of AY as follows:

ynew }old + Ay,fori = 1 toN (5)

Additional details of the MGM algorithm can be found in References 12 and 14.

Trailing-Edge Crossover

The present inverse procedure was developed to permit the design of complete airfoil surfaces,
including the leading-edge and trailing-edge regions. However, a completely arbitrary choice for
a target pressure distribution does not always result in a well-posed inverse design problem.
For example, Volpe 4 has presented a technique to satisfy the three integral constraints relating
target pressures and freestream conditions that are required to insure a well-posed problem in
compressible flow. As a possible consequence of using unconstrained target pressures, any inverse
procedure may produce an airfoil geometry which may exhibit trailing-edge crossover, or lead to
other unrealistic configurations.

Therefore an artifice is used in the present work so that the trailing edge thickness can be
controlled and so that any tendency of the airfoil to "fish-tail" is identified. If the geometry
is driven to a "fish-tail" configuration (trailing-edge crossover), a linear wedge is added to the
airfoil section so that the resulting trailing-edge thickness equals a predetermined value. It has
been demonstrated that this wedge technique can give some measure of control over the potential
manufacturability of airfoil configurations generated by automated design procedures.2 2 It should
be noted that if the above wedging technique is required continuously during the design process,
the original target pressures should be examined for possible modification along the lines discussed
by Volpe4. A technique such as this may be used to modify these pressure distributions in order
to rigorously provide for a well posed inverse design problem.

RESULTS

The MGM design procedure has been incorporated into the 2-D Navier-Stokes code described
previously. The resulting computer program is referred to here as the MG-MGM code. In this
section, we present three sample problems to illustrate application of the design method. Target
pressures are obtained from a known "target geometry", and the inverse design method is then
used to "reproduce" the original "target" configuration. These test cases demonstrate that the
starting geometry, or baseline configuration, used to start the design process does not have to be
"close" in thickness or camber to the target geometry.
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Several parameters were held constant for each of the sample problems. A "W-type" multigrid
cycle was used throughout, together with five successive levels of grid refinement. Also, five
"W"multigrid cycles were used between all airfoil geometry updates (ie. one design cycle). The
computational C-grid used, consisted of 321 nodes in the wrap-around, or C-direction (33 of these
in the wake region) and 64 nodes in the surface-normal, or 77-direction, for a total of 20,544 grid
points. The first 77 = constant grid line was clustered to within 0.0001 chord lengths from the
airfoil surface. Since each point on the airfoil surface is allowed to move independently, each
can be thought of as an independent variable in the context of an optimization problem. For the
cases presented above, there were 257 such points around the airfoil surface.

For each case presented, a total of 160 design cycles (i.e. geometry updates) were specified.
The program was executed on a Cray 2 and each airfoil design required approximately 16 minutes
of CPU. Comparable Euler designs would require approximately 11 minutes on the same machine
for a similarly dimensioned grid.

Design Case No. 1

For Case No. 1, the MG-MGM code was first used in the analysis mode to compute the
surface pressures corresponding to an RAE 2822 airfoil at AIoo = 0.8, an angle of attack, a, equal
to zero degrees, and Re, = 6,500,000, based on airfoil chord.

This calculated Cp distribution was then used as a target distribution for the MG-MGM code
operated in the design mode. The baseline airfoil used to start the design was an NACA 0012
section. As shown in Fig. 3, this airfoil is significantly different in shape from the RAE 2822
airfoil used to produce the target pressure distribution. In this figure, as well as others depicting
airfoil geometry, the vertical scale has been expanded.

Figure 4 compares the design and target airfoil pressures after 40 design cycles while Fig.
5 compares the design and target airfoil contours at this point in the design process. Figures 6
and 7 present the corresponding comparisons for pressure and geometry after 160 design cycles.
Figure 8 shows the results of a separate analysis computation performed after the design was
completed. This analysis started from uniform freestream conditions (impulsive start) and used
the grid produced by the designed airfoil contour given in Fig. 7. The comparison between design
and target pressures is actually better than that observed during the design process. This better
correlation exists because the pressures obtained during the design process are generated with only
a small number of multigrid cycles on the latest computational grid. The final design corresponds
to 160 updates to the airfoil geometry and 160 grid-generation steps. The MGM design algorithm
itself is not computationally intensive, and because a simple algebraic grid generation scheme is
also used in the present application, the computational overhead represents only a small fractional
increase over that which would be required to run the original CFD method in the analysis mode.

Design Case No. 2

For Case No. 2, the MG-MGM code was used in the analysis mode to compute the surface
pressures corresponding to an NACA 0012 airfoil at M,, = 0.8, an angle of attack, a = 2.0
degrees, and Re, = 6,500,000, based on airfoil chord,

This calculated Cp distribution was again used as a target distribution for the MG-MGM code
operated in the design mode. This time the baseline airfoil was also an NACA 0012 section.
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However, during the design process, the freestream angle of attack was kept at a = 0.0 degrees.
This case was used to study the possible effects that a mismatch between specified pressures and
angle of attack might have on the design process. Figure 9 compares the baseline and target airfoil
pressures for this case. As would be expected for a transonic flight condition, the shock wave
locations are significantly different for the a = 2.0 targets and the a = 0.0 baseline condition.

Figure 10 compares the design and target airfoil pressures after 40 design cycles, while Fig.
11 compares the design and target airfoil contours at this point in the design process. As can be
seen in Fig. 11, after 40 design cycles the airfoil surface has already been rotated upwards to
adjust to the target pressure. Figure 12 presents a comparison of the geometry after 160 design
cycles. As in the previous case, a separate analysis run was performed to verify the airfoil design.
Figure 13 shows the results of the separate analysis computation performed after the design was
completed. This analysis started from uniform freestream conditions (impulsive start) and used
the grid produced by the designed airfoil contour given in Fig. 12. Finally Fig. 14 shows a
plot of the average Aq2 versus multigrid work for the 800 multigrid cycles. This quantity drops
approximately two orders of magnitude during the design process and is used to monitor the
progress of the design algorithm.

Design Case No. 3

The final example problem, design Case No. 3, was chosen to demonstrate that large geometric
changes can be achieved with the MGM design algorithm. For this application, the target pressures
corresponded to an NACA 0012 airfoil at Alo= 0.8, angle of attack, a = 0.0 degrees, and Rec
= 6,500,000, based on airfoil chord. The baseline configuration used was an NACA 0006 airfoil.
A comparison of the target and final design airfoil shapes is shown in Fig. 15. A comparison
of the target pressures, and those obtained from a separate analysis (impulsive start) of the final
design configuration are shown in Fig. 16. In this example, an airfoil design was successfully
accomplished which required a 100% increase in airfoil thickness over that of the baseline airfoil
shape.

CONCLUDING REMARKS

The MGM design procedure has been incorporated into an existing multigrid Navier-Stokes
code. The computational efficiency of the method indicates that it is a viable tool for the
design process. The actual computational effort of this design method depends, of course, on
the complexity of the target pressure distributions chosen. Normally, aerodynamicists would seek
to eliminate shockwaves due to the impact of wave drag on performance. Previous experience
with the MGM algorithm 1'4 indicates that shock-free design applications require about 50% less
computational effort than for flows with shockwaves present. The transonic flow cases shown
here were picked, in part, to demonstrate the design algorithm's robustness and ability to respond
correctly to shockwaves in the flowfield. This feature is important because regions of sonic flow
may be created locally near regions of high airfoil curvature even at relatively low freestream
Mach numbers.

Because of the computer resource requirements, any Navier-Stokes based design method would
likely be used in combination with other, lower-cost design methods. For example, an initial
airfoil shape designed with a FPE method may prove to be an excellent starting configuration for
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a higher-order design approach. Used in this manner, the present Navier-Stokes inversedesign
method should then be able to account'for viscous flowfield phenomena that-may not be detected
or predicted accurately enough by other methods based on FPE or Euler solution procedures.
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1. ABSTRACT

The objective of this paper is to compare two closely-related methods for aerodynamic design
optimization. The methods, called the "implicit gradient" approach and the "variational" (or
"optimal control") approach, both attempt to obtain gradients necessary for numerical optimization
at a cost significantly less than that of the usual black-box approach that employs finite difference
gradients. While the two methods are seemingly quite different, they are shown to differ
(essentially) in that the order of discretizing the continuous problem, and of applying calculus,
is interchanged. Under certain circumstances, the two methods turn out to be identical. We
explore the relationship between these methods by applying them to a model problem for duct
flow that has many features in common with transonic flow over an airfoil. We find that the
gradients computed by the variational method can sometimes be sufficiently inaccurate to cause
the optimization to fail.

2. INTRODUCTION

We first define what we mean by "analysis" and "design" in the context of computational
aerodynamics. In the "analysis problem" we seek to determine the aerodynamic flow, given a
description of the geometry of an airfoil or aircraft. In the "design problem" we seek to do the
inverse; given the flow, find the geometry that will produce it. Here, we are concerned with
methods for solving the design problem that are based on coupling solutions of the discretized
analysis problem with numerical optimization procedures.

In a previous paper [4] we compared three optimization-based approaches for solving com-
putational aerodynamics design problems. (Actually, the methods apply to many computational
physics design optimization problems.) The optimization methods are (i) the common "black-
box" method with finite difference gradients, (ii) a modification where the gradients are found
by an algorithm based on the implicit function theorem (hereafter called the implicit gradient ap-
proach), and (iii) an "all-at-once" method where the flow and design variables are simultaneously
altered. We also showed that the implicit gradient approach was very closely related to a partic-
ular "variational" or "optimal control" approach to design optimization that has recently attracted
interest (e.g., [5]). The purpose of the present paper is to further explore this relationship. (We
note that the close relationship between nonlinear optimization and optimal control has apparently
been known for some time[2][6]. However, this relationship appears to be little-known among
practitioners in applications disciplines utilizing these mathematical techniques.)

The finite difference approach to obtaining gradients is conceptually the simplest, but it is
ordinarily prohibitively expensive for practical problems, since it requires at least one solution
of an analysis problem for each design parameter. Both the implicit gradient approach and

[the variational approach have the objective of determining gradients needed in an optimizatiol
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[procedure at a significantly reduced cost. Both approaches involve-using "calculus-like" operations],
to derive the formulas employed in finding the gradients. As explained later, the procedures differ
in that the order of applying calculus, and of discretizing the continuous problem, are interchanged.
Because the implicit gradient approach applies to an already discretized analysis problem, it can be
used co "retrofit" many analysis codes to produce inexpensive gradients for design optimization;
see [7] for details.

3. MODEL PROBLEM

3.1 Continuous Analysis Problem

In [4] we showed how the steady flow of an inviscid fluid in a duct of variable cross-sectional
area A( ), governed by the Euler equations, can (under certain circumstances) be reduced to the
single nonlinear ordinary differential equation

f + g =0 (1)

where

f(u) u u + u/u, g(-, T -/u),

u(6) is the fluid velocity, 6 is distance along the duct, and ' and R are given constants. Here, the
subscript 6 means differentiation with respect to . While a much more careful specification was
given in [4], roughly speaking the continuous analysis problem is to find u, given a differentiable
area function A(6) and the specified boundary values u( = 0) and u(6 = 1). These boundary
values are chosen so that the (weak) solution of (1) contains a shock.

3.2 Discrete Analysis Problem

Let the 6-coordinate be discretized by a uniform, cell-centered grid with centers at j=
(j - 1/2)h, A6 = 1/J, where J is the number of unknown grid values. Let Uj represent a
piecewise constant approximation to u on each grid cell. Then, a conservative difference scheme
for (1) is given by

_ fwj+11 - fj-1/2 + gj = 0. (2)

Here the source term 9, = g(Ul, (Ac/A)j) and we assume that the duct shape A(6) is given by a
piecewise cubic spline described in the B-spline basis with coefficients D., for m = 1,2,..., M
and that A(0) and A(l) are fixed. (At/A), is obtained by evaluating the spline and its derivative
at 6,. The boundary conditions on U are U0 = u(6 = 0) and Uj+l = u(6 = 1). The fluxes
f)+,./2, as functions of U) and Uj+1, are chosen to correspond to the Godunov, Engquist-Osher,
or Artificial Viscosity methods for numerically approximating hyperbolic conservation laws [4].

Once the discretization has been made, we are faced with solving a system of nonlinear
algebraic equations. The system is

Given: D,,, m = 1,..., M (spline coefficients describing A(6)).
Find: Uj satisfying

W(U) = 0. (3)

L
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F Here W is the vector of discretized equations (2) for j = 1,2,..., J and the boundary]
conditions on U.

3.3 Continuous Design Problem

We want to formulate the design problem as a minimization problem. It is:

Given: a desired (or goal) velocity fi( ).
Let: h(u) = .(u( )- fi( 2 ,f(u) = f6' h(u)d .
Find: A(,) such that u(C) satisfies (1) and f(u) is minimized.

3.4 Discrete Design Problem

We assume that a desired (or goal) velocity distribution &. is given for each computational
cell in the analysis problem. Then we have

Given: 0j, j = I"..,J.
Let: H = (U - 6) 2 ,F(U) = Hi
Find: Din, m = 1,2,..., M (spline coefficients describing A(C)) such that (3) is satisfied
and F(U) is minimized.

4. COMPARISON OF THE IMPLICIT GRADIENT APPROACH AND
THE VARIATIONAL APPROACH

In this section, we compare two closely-related, optimization-based approaches to finding an
approximate solution to the "Continuous Design Problem" posed above. In each case, function
values needed in the optimization are obtained by solving a discrete analysis problem and
evaluating a discrete form of the objective function (and constraints). The key question is how
gradients needed in the optimization are computed:

1. Implicit gradient approach. Discretize the problem first to obtain the "Discrete Design
Problem," then find a formula for the gradients by using the implicit function theorem.

2. Variational (or control theory) approach. Find a formula for the "gradients" for the
continuous problem (i.e., in infinite dimensional space). This formula involves the solution
of the analysis problem, and the solution of another differential equation called the adjoint
problem. Discretize both the forward and adjoint problems, then evaluate the formula to get
the gradient.

After the gradients are obtained, the function values and gradients are used in an optimization
procedure to improve the current estimate of the design variables. As can be seen, these ap-
proaches differ, essentially, in that the order of discretizing, and of doing calculus-like operations,
is interchanged.

4.1 Implicit Gradient Approach

The implicit gradient approach is a natural extension of the usual black-box method wherein
gradients needed in the optimization are obtained by finite differences. We thus first introduce the
black box method. We do so in a somewhat general settiag, then specialize to the model problem.

We assume that the design problem has already been discretized. Let nu and nD be the
[number of flow variables U and design variables D, respectively. (In the duct flow modelj



'70
Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences
(ICIDES-III). Editor: G.S. Dulikravich. Washington DC,. October 23-25, 1991.

Fproblem, the flow variables are the velocities, and the design variables are the spline coefficients
describing the geometry.) Then we seek to solve

minimize F(D)
D E RD (4)

subject to C(D) > 0

where F(D) is the objective function and C(D) is a vector of mD constraint functions. In the
black-box method, each evaluation of F(D) requires a solution by the analysis code.

For simplicity, the unconstrained version of (4) is considered below. However, the results
apply to the constrained problem as well.

As in our model problem, the function F will often be formulated in terms of the flow
variables U. In this situation, F is dependent on the design variables D in an indirect manner.
That is, the flow variables U are linked to the design variables D via the discretization of the
differential equations, since the flow variables will change when the geometry is altered. In the
general case, F will have both a direct dependence on D and an indirect dependence on D, due to
the dependence of U on D. Thus, one could consider the objective function to be F(U(D), D).
The term U(D) indicates that, given D, the value of U is obtained by solving an analysis problem.

Assume that the analysis problem has been discretized (as in Section 3.2) so that an analysis
consists of solving a system of nonlinear equations. In this case function evaluations for the
black-box method are computed as follows. Given a design specified by D, the analysis code
solves W(U) = 0, where U is the vector of nu flow variables and W is a vector of nu nonlinear
equations. Since the analysis problem is an implicit function of D it can be viewed as solving

W(U,D) = 0 (5)

for U, given a design specified by D. When gradients are obtained by finite differences, each
component of D is successively perturbed, and (5) is re-solved to get a perturbed value of U.

We now review how gradients can be obtained without recourse to finite differences. Suppose
that U and D are considered as subsets of the nu + nD vector X given by

X-( U ID); (6)

the Jacobian (first-derivative) matrix of (5) is then

o IJ D], (7)

where J is nu x (nu + nD), JU is the nu x nu Jacobian with respect to the flow variables and
JD is the nu x nD Jacobian with respect to the design variables. (The partitioned view of the
Jacobian implies nu >> nD; this will usually be the case.) Note that Ju is sometimes available
in analysis codes, especially those based on Newton's method and variants. JD may, or may
not, be easily obtainable. (The availability of Ju and JD in computational aerodynamics codes
is discussed in [7].)

Consider the function F(U, D), where F is the same as the black-box method objective
function F, except that U and D are considered to be independent of each other. The function

Lt(U, D) is then equivalent to the black-box method objective function F(U(D), D) only wherJ
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(5) is satisfied. The gradients VD.F(X) and Vu F(X) are ordinarily "easy" to obtain because]
of the assumed independence.

However, the optimization code requires VDF, the gradient of the black-box objective
function F with respect to the design variables D. As shown in [4], this gradient is given by

VD F(X) = VDF(X)- jD JJT Vu F(X) . (8)

Here, superscript T indicates transpose. The derivation of (8) assumes that we are at a solution
of (5).

The following algorithm could be used for computing VDF using (8):

i. Compute VtP and VDFP
ii. Solve JTA - -Vu' for A
iii. Compute VDF = VDF + JTA.

Note that the minus sign is associated with the second step of the algorithm to facilitate
comparison with the variational approach later. Note also that, if it is difficult to solve linear
systems with the matrix u1 the linear algebra in (8) can be rearranged as (Jj'JD) TVUP(X),
requiring nD solves with JU. Observe that J~lJD is the matrix of "sensitivities" of the solution
U with respect to the design variables D.

We now apply this algorithm to the model problem and give a complete specification of one
evaluation of a gradient during the optimization.
Implicit gradient algorithm for model problem:

1. Given the current estimate of the design variables Din, solve the discrete analysis problem (3).
2. Compute VU = U - U andV DF = O.
3. Given the Jacobian JU of the discretized flow equations with respect to the flow variables U,

evaluated at the solution, solve JffA = -(U - U) for A
4. Given the Jacobian JD of the discretized flow equations with respect to the design variables

D, evaluated at the solution, compute the gradient VDF = JTA

4.2 Variational Approach

In the variational approach, we deal first with the "Continuous Design Problem," and use
calculus to derive an infinite dimensional "gradient." We then discretize the problem. Since it
is somewhat cumbersome to present the methodology for a general case, we specialize to the
model problem immediately.

For technical reasons that will become apparent later, it is desirable to augment the governing
differential equation (1) with an artificial viscosity term eu , giving

w(u,d) = -eu + f + g(u,d) = 0. (9)

Here, d( ) is a function that controls Ac/A.

Recalling that h(u) = (u( ) - O( ))2, the Lagrangian is

L L = h(u)d6 + j A()w(ud)d6,
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Liad A() is an adjoint function that is the continuous analogue of Lagrange multipliers. Applyingi
the calculus of variations, and doing the usual integration-by-parts, we find that the variation of
the Lagraigian is

6L = [-e(A5uE - A&a6) + b(Af)]'

+ (-eA - fAf + gA + h.)6ud + Awd(bd)d .
0 10

(Note Wd = gd.) The second term can be made to vanish by requiring that the adjoint equation

-- As - fu f + guA = -hu (10)

be satisfied. In (10), fu,gu, and h, are given functions of , since they are evaluated at u( ),
the solution of (9). The integrated term [] vanishes since 6u(O) = 6u(1) = 0 and we choose
A(0) = A(1) = 0 as the boundary conditions on the adjoint A. Then, the "gradient" of the
continuous design problem with respect to changes in the controlling function d is expressed by
the variational formula

8f= 1 w bd 6.(I1

We now need to discretize (9), (10), and (11). We assume that (9) is discretized by one of
the methods described in Section 3.2. Thus, the discretization of the analysis problem is assumed
here to be the same as for the implicit gradient approach. (In general, of course, this need not be
so.) While those discretizations (the G-, EO, and AV-schemes) are designed to solve the inviscid
(e = 0) equation, they in fact all incorporate some kind of artificial viscous effects, either by
upwinding (G and EO) or by explicit artificial viscosity (AV). That is why we added the viscous
term in (9): so it would appear in equation (10), and thus guide us to reasonable discretizations
of the adjoint equation.

Let the computational grid be as described in Section 3.2, and Aj be the approximation to A
on the grid. Noting that h, = u - i, let us take the discretization of the (10) to be given by

BA = -(U - (U),

where the difference operator B remains to be specified. Note that this equation is linear in A
since (10) is linear in A.

Finally, to discretize (11) we could use any reasonable quadrature formula. However, we
choose to use the rectangle rule, which gives for the k-th component of the gradient

J

(VDF)Ak = Z(Wi)DAj.
j=1

Here, (W)Dk is the derivative of the j-th discrete flow equation with respect to the k-th design
variable. In matrix notation, this is none other than

VDF = jT A,

so we have again deliberately chosen the discretization to agree with Step 4 of the implicit
radient algorithm. j
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F Gathering these pieces together, a complete specification of one evaluation of a gradient in]
an optimization procedure is given below.
Variational algorithm for model problem:

1. Given the current estimate of the design variables Din, solve the discrete analysis problem (3)
2. Compute VuF = U - & and VDF = 0.
3. Solve the discrete adjoint equation BA = -(U - U) for A
4. Given the Jacobian JD of the discretized flow equations with respect to the design variables

D, evaluated at the solution, compute the gradient VDF = jTA

As we have constructed this algorithm, it differs from the implicit gradient algorithm only
in step 3. The two procedures are identical if we choose B = JT, the transpose of the Jacobian
of the analysis problem, evaluated at a solution of the analysis problem. Looked at another
way, a particular choice of a discretization of the analysis problem, and the associated Jacobian
Ju, suggests a specific choice of the discretization B of the adjoint problem, namely B = j T.

Pursuing this idea, let (JU)G,(JU)EO, and (JU)AV denote the Jacobians associated with the G,
EO, and AV schemes for the analysis problem, respectively. Then three possible discretizations
of the adjoint are given by B = (Ju)T,B = (JU)To, and B = (Ju)TV. We note that two of
these, (JE) and (Ju)o do not correspond to obvious discretizations of the adjoint equation
(10). This is largely due to the careful treatment of "sonic points" (points where fu = 0) and
shocks in the G and EO schemes.

Let us call the discretizations of the forward and adjoint problems incompatible if B - jT.

This means that the discrete analysis problem and the discrete adjoint problem are not discretely
adjoint. It is precisely the effect of such incompatibility that we want to test. Thus, to carry out
such tests we may solve the forward problem with (say) the G-scheme, but choose the adjoint
discretization to be B = (Ju)To. Such comparisons will be pursued in the Numerical Results
section, below. There, we will use the notation [G, (JU)T 0 to refer to such a combination.

We may also look at (10) directly and ask "what is a good way to discretize this differential
equation?" It turns out that, for our model and test cases, f, changes sign once, and g" > 0.
For small c, (10) is thus a singular perturbation, two-point boundary value problem with a
turning-point. A good numerical method for such problems is the El-Mistakawy-Werle scheme;
a complete specification of this scheme, and. an analysis which applies directly to the cases tested
below, is given in [1]. That analysis shows that, for our test cases, the adjoint function A is
"smooth" in the interior of the domain and has boundary layers at both ends. We will refer
to this scheme for solving (10) as the EMW scheme. (In the results presented later, we took

= 10-- and used linear interpolation to move between the "point-centered" grid natural to the
EMW scheme and the "cell-centered" grid used in the analysis solvers.)

4.3 What is the "correct" gradient?

When we use the variational formulation described above, and we choose B to be anything
other than Jff, we will obtain a gradient different from the one obtained by the implicit gradient
approach. This raises the issue of which gradient is "correct." There are two different philosophical
points of view. The first holds that, since we are really computing an approximation to the
continuous design problem, both gradients represent different approximations to the "continuous
gradient," and hence neither is correct. The second holds that, irrespective of the continuous
problem, our goal in computation is to solve the discrete design problem. We are more inclined
o adopt the second point of view. Thus, we feel that (modulo finite precision arithmetic) theJ



74,
Third International Conference on Inverse Design Conceots and Optimization in Engineering Sciences,
(ICIDES-I1h. Editor: G.S. Dulikravich. Washington D.C.. October 23-25,1991.

Implicit gradient is the correct one, and that the variational formulation only yields the correct]
gradient when the particular discretization of the adjoint represented by B = J T is chosen.

5. NUMERICAL RESULTS

In this section we present numerical results obtained by solving the discrete design problem
for duct flow described in Section 3, utilizing gradients computed by the implicit gradient and
variational methods of Section 4. As constructed in Section 4, these methods differ only in step
three of the algorithms, and they are identical if in step three of the variational algorithm we
choose B = .1T, the transpose of the Jacobian of the discrete analysis problem with respect to the
flow variables. The specific algorithm used below is thus specified by the choice of B. We will
first outline the optimization methods and test cases used. Then we will report on some tests using
controlled amounts of gradient error, and compare the implicit gradient and variational methods.

5.1 Optimization Methods

The basic optimization code used was NPSOL version 2.0, a product of the Systems
Optimization Laboratory, Stanford University. NPSOL is an implementation of the Sequential
Quadratic Programming (SQP) method. NPSOL 2.0 computes a secant approximation to the
Hessian (2nd derivative) matrix and the user supplies first derivatives. Results obtained with an
optimization method similar to steepest descent are not reported here, but may be found in [8].

5.2 Test Cases

For our tests, the design variables (called D in Section 4) were the B-spline coefficients
describing the duct geometry A( ). The two end values of A were fixed at A(0) = 1.050 and
A(l) = 1.745. Velocities along the duct were the flow variables (called U in Section 4) for the
duct design problem. We took J = 40 grid cells, so there were nu = 40 flow variables; this
gives resolution about equal to what might be expected in practical computations. The boundary
conditions were U0 = 1.299 and U41 = 0.506. In the optimization runs Newton's method was
used to solve the analysis problem (3), and the analyses were "warm started." That is, the initial
guesses for the flow velocities were taken to be the solutions from the preceding analysis. The
initial velocity profile for the first analysis in an optimization run was a linear profile connecting
the boundary conditions. The goal velocities U1 were the evaluations on the computational grid
of the analytic solution for a goal duct shape with a cross-sectional area given by a sinusoidal
perturbation of the linear duct. These area and velocity profiles are the curves marked (X) in
Figure 1. No constraints were imposed in these tests. Without constraining the geometry, it is
possible for the optimizer to generate designs that cannot be analyzed (the analysis problem has
no solution). In this case, we assign a large function value and return to the optimizer. The
optimizations were allowed a maximum of 70 major iterations, which is considerably more than
would be tolerable in practical use. (This corresponds, very roughly, to a maximum amount of
work equivalent to 1000 linear system solutions with the Jacobian of the analysis problem.)

The majority of the tests were conducted with nD = 2 design variables. For these tests, three
initial guesses for the design variables were selected. These three guesses yield solutions of the
analysis problem shown in Figure 1. A contour plot showing the dependence of the objective
function on the design variables is displayed in Figure 2. (This plot is for the AV-scheme; the
plots for the other schemes are similar.) Also shown are the locations of the optimum and of
[he three initial guesses of D. The contour plot shows a narrow valley with steep sides and aj
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relatively flat bottom. Descending the steep sides corresponds (roughly) to getting the shock in1

the correct location; this has the largest impact on reducing the objective function and is relatively
easy for the optimizer. Moving along the valley bottom corresponds to getting the other details
of the velocity profile right. This is much harder to do. Thus guess 1 corresponds to a relatively
difficult problem, while guesses 2 and 3 correspond to problems that are somewhat easier.

5.3 Controlled gradient error tests.

Since we cannot directly control the gradient errors that are obtained when using incompatible
discretizations of the forward and adjoint problems, we first conducted some controlled gradient
error tests. In these tests we first obtained the correct gradient using the implicit gradient method,
and then added controlled amounts of random error to the gradient. The quantitative results
are given in [8]. We were surprised to find that the optimizations began to fail at fairly small
amounts (a few percent) of gradient error.

The trust region methods for step size determination in optimization used in [3] apparently
worked with a much higher level of relative error in the gradients. However, we found that trust
region methods were not much better then line search methods (like in NPSOL) when applied to
our model, which is apparently a "harder" problem than many standard optimization test cases.

5.4 Tests comparing the implicit gradient and variational approaches

We now proceed to compare results obtained with the implicit gradient and variational
approaches.

The optimizations were run with the twelve combinations of analysis and adjoint solvers
shown in Table 1. The discretizations of the analysis problem indicated by G, EO, and AV
correspond to the Godunov, Engquist-Osher, and Artificial Viscosity schemes (described in Section
3.2), respectively. The discretizations of the adjoint problem are as described at the end of
Section 4.2. Here, the notation B = (Ju)T means, for example, that the discretization of the
adjoint differential equation in step 3 of the Variational Algorithm is given by the transpose
of the Jacobian of the analysis problem when the Godunov scheme is used. The particular
combinations [G (Ju)T], [EO, (JU)To], and [AV, (Ju)TvI mean that the forward and adjoint
solver- jr- iscretely adjoint, and thus that the implicit gradient method is being used. In all
othe, cases, t .vialysis and adjoint solvers are incompatible (not discretely adjoint).

The qualitative results of Tale I show that the only reliable combinations of forward and
adjoint solvers are those corresponding to the implicit gradient method. There does not seem to
be any other discernible pattern in the results. An examination of more quantitative data, like
final value of the objective function and specific amounts of work used, also yield little additional
useful information. An examination of the gradients obtained by the variational method (not
discretely adjoint) shows that the relative error compared to the correct (implicit) gradient is often
more than a few percent, and that the gradients are in error both in direction and magnitude [8].

We carried out many of the same tests with an optimizer more like steepest descent, and also
with the objective function "smoothed" by a method suggested by Jameson [5]. Such smoothing
should reduce the impact of getting the shock location correct on the objective function. (It
broadens the valley of Figure 2.) The necessary modifications to the variational approach are
described in [8]. Agau, we were unable to discern any pattern in the results: sometimes the

Lmodifications helped, sometimes they hurt. j
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F Additional test were carried out with nD = 10 design variables, and the same conclusion was]
reached: the only reliable combinations of forward and adjoint solvers correspond to the implicit
gradient method. That is, the forward and adjoint solvers should be discretely adjoint.

6. CONCLUSIONS

We have shown that two seemingly quite dissimilar approaches to design optimization can,
under certain circumstances, be very closely related or even identical. The two approaches, the
implicit gradient method and the variational method, both result in gradient calculations that are
significantly cheaper than generating gradients by finite differences. The methods differ from
each other (essentially) in that the order of discretizing the continuous problem, and of applying
calculus, is interchanged. In the implicit gradient approach, the continuous problem is discretized
first, and a formula for gradients needed in the optimization is derived by applying the implicit
function theorem. In the variational method, calculus is applied first, and one then needs to solve
two differential equation problems: the analysis (or forward) problem, and the adjoint problem. If
the analysis problem is discretized the same way as for the implicit gradient approach, and if the
adjoint is discretized by a method that corresponds to the transpose of the Jacobian of the forward
discretization, then the methods are (modulo some details) the same. If the adjoint discretization
is taken to be anything else, then the two methods generate different gradients and the variational
method gradients are "in error." In our tests using a model for transonic duct flow, the gradient
errors were generally small, but were nevertheless sufficient to cause the optimizations to slow
down significantly or to fail altogether. For our model problem and optimization method, the
only reliable combination of forward and adjoint discretizations is the one corresponding to the
implicit gradient method.
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Figure 2: Contour plot of the objective function (for the AV-scheme) showing locations of Guesses 1, 2, 3, and the
optimum. The two axes represent the two design variables (B-spline coefficients) describing the area funcuon A j
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NPSOL B jU=
G=(Ju)G T (jU,)TEM

+ -- 0
G +---

+ + + 0

Analysis + -0

Discret- EQ - + 0 0
ization 0 + 0 0

0 + +-
AV - + + 0

0 + 0

Table 1: Results obtained using NPSOL as the optimizer, for various combinations of forward and adjoint solvers. In
each cell, the three enties correspond to initial guesses 1, 2, and 3 for the design variables. The designation (+) means
that the optimization converged to the correct solution. The designation (o) means that the optimization got "close,"
but did not converge. The designation (-) means that the optimization did not succeed in getting close to the solution.
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ABSTRACT

Thrust vectoring is continuing to become an important issue in future military aircraft
system designs. A recently developed concept of vectoring aircraft thrust makes use of flexible
exhaust nozzles. Subtle modifications in the nozzle wall contours produce a non-uniform flow
field containing a complex pattern of shock and expansion waves. The end result, due to the
asymmetric velocity and pressure distributions, is vectored thrust. Specification of the nozzle
contours required for a desired thrust vector angle (an inverse design problem) has been achieved
with genetic algorithms. However, this approach is computationally intensive preventing nozzles
from being designed in real-time which is necessary for an operational aircraft system. An
investigation was conducted into using genetic algorithms to train a neural network in an attempt
to obtain, in real-time, two-dimensional nozzle contours. Results show that genetic algorithm
trained neural networks provide a viable, real-time alternative for designing thrust vectoring
nozzles contours. Thrust vector angles up to 200 were obtained within an average error of
0.09140. The error surfaces encounteied were highly degenerate and thus the robustness of
genetic algorithms was well suited for minimizing global errors.

INTRODUCTION

Future military aircraft will rely heavily on two- and three-dimensional thrust vectoring
engines to boost their maneuverability and provide enhanced performance spanning their large
operating envelopes. Current new technology engines use post-exit vanes or large moveable
surfaces to redirect engine exhaust to yield the desired thrust vectoring. Although this method
has proven to be effective, penalties must be paid. For example, most thrust vectoring devices
are heavy, primarily due to structural requirements involving the impinging exhaust flow. The
devices must also be designed to withstand the extreme temperatures of the engine exhaust gases
impinging on them. Control of the vectoring apparatus is complex and adds even more weight to
the aircraft. Furthermore, the installation of typical thrust vectoring devices tend to mandate
large clearance gaps to allow surface movement and there is little opportunity for aerodynamic
fairing. These and other factors can combine to yield higher overall drag forces on the aircraft.

A novel concept of vectoring engine thrust which addresses these concerns has been
developed and shown to be viable [1]. The concept makes use of flexible nozzles where engine
exhaust gases are turned not by some post-exit apparatus, but by subtle changes in the contour of
the nozzle walls. The contour modifications produce a complex shock and expansion wave
pattern in the nozzle flow field and the end result is vectored engine thrust. Through judicious
tailoring of the nozzle contour, a large range of thrust vector angles may be achieved.
Theoretical pitch vectoring of ±20* has already been demonstrated with this concept. Full three-
dimensional vectoring (pitch, yaw, and roll) is currently being investigated and could possibly
eliminate the need for any tail control surfaces on future aircraft. This would result in a
tremendous savings in weight and drag as well as a significant reduction in radar cross-section.
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This novel approach to thrust vectoring is based entirely on modifying the contour of the
exhaust nozzle. In order for the technique to be useful in an operational aircraft system, the
nozzle contour must be alterable in real-time. Structural concerns aside, the challenge is to
specify, on demand, a nozzle contour for a pilot-requested thrust vector angle. This suggests that
modification of the nozzle contour would be tied to the flight control system of the aircraft.
What is necessary for the success of such a thrust veczoring system is the real-time solution of an
inverse design problem. Simply stated, for a requested thrust vector angle, what would be the
required nozzle contour?

Existing Jacobian-based methods for solving an inverse problem of this type are fraught
with numerical difficulties and usually require an intense computational effort. A non-Jacobian
based method like genetic algorithms can be used to compute the required nozzle contour for a
requested thrust vector angle as was.proven in a recent study by King, et al. [2]. However, the
specification of the nozzle contours still could not be accomplished in real-time using genetic
algorithms due to the computational requirements. Genetic algorithms, although they can
routinely solve the inverse nozzle design problem (a definite advantage over many Jacobian based
methods), still require numerous flow field evaluations to do so.

The hypothesis of the work presented here was that the inverse design problem could be
solved 'in real-time if a non-Jacobian based method (genetic algorithms) was coupled with a
neural network. Neural networks are biologically inspired computing systems with the
phenomenal ability to grasp topological invariances that underlie inverse transformations. Thus, a
neural network has the potential to be trained by a genetic algorithm and then, after sufficient
training, would be able to solve the inverse nozzle design problem in real-time. It is important to
note that there is no intention to dismiss Jacobian methods; in fact the coupling of a Jacobian
method with a neural network to design nozzles is currently under investigation by the authors.
In this paper, however, it is demonstrated that by using genetic algorithms, neural networks can
be designed to provide an alternative with remarkable dexterity and computational ease for the
real-time specification of thrust vectoring exhaust nozzles.

GENETIC ALGORITHM OVERVIEW

Genetic algorithms are increasing in popularity as a search and optimization technique but
are still unknown to a large portion of the scientific community. Thus a brief description is in
order. Genetic algorithms (GAs) are search algorithms based on the mechanics of genetics; they
use operations found in natural genetics to guide their trek through a search space. Their main
strength lies in their ability to perform efficiently across a broad spectrum of search' problems
including problems that are large, noisy, and poorly behaved. Two empirical investigations in the
early 1970's demonstrated the technique's efficiency in function optimization [3, 4]. Subsequent
application of GA's to the search problems of pipeline engineering, VLSI (very large scale
integration) microchip layout, structural optimization, job-shop scheduling, medical image
processing, propulsion system component design, and machine learning adds considerable evidence
to the claim that GAs are broadly based and robust.

GAs consider many points in a search space simultaneously and therefore have a reduced
chance of converging to a local optimum. In most conventional search techniques a single point
is considered based on some decision rule. These methods can be dangerous in multi-modal
(many peaked) search spaces because they can converge to local optima. However, GAs generate
entire populations of points, test each point independently, and then combine qualities from
existing points to form a new population containing improved points. Aside from conducting a
more global search, the GA's simultaneous consideration of many points makes it highly adaptable
to parallel processors since the evaluation of each point is an independent process.

GAs require the natural parameter set of the problem to be coded as a finite length string
of characters. This is actually true of all operations performed on a computer at the machine
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- level, however the GA requires this coding on the local level. The user must represent possible
solutions to the search problem as character strings. This may at first seem like an imposing task
but there have been a number of techniques developed for coding solutions to search problems
[5]. Since GAs work directly with a coding of the parameter set and not the parameters
themselves, they are difficult to fool because they are not dependent upon continuity of the
parameter space. A GA only requires information concerning the quality of the solution
produced by each parameter set (objective function values). This differs from many optimization
methods which require derivative information or, worse yet, complete knowledge of the problem
structure and parameters. Since GAs do not require such problem-specific information they are
more flexible than most search methods.

Lastly, GAs differ from a number of search techniques in that they use random choice to
guide their search. Although chance is used to define their decision rules, GAs are by no means
"random walks" through the search space. They use random choice efficiently in their
exploitation of prior knowledge to rapidly locate optimal solutions.

NEUROMORPHIC APPROACHES TO INVERSE PROBLEMS

Before presenting the results of the neural network designed thrust vectoring nozzles, it is
necessary to discuss the justification for solving an inverse problem using a non-Jacobian, genetic
algorithm trained neural network approach. Of fundamental importance in solving inverse
problems is the classic Stone:-Weierstrass theorem [6, 7]. Using the Stone-Weierstrass theorem it
can be shown that under certain conditions non-linear operators, such as the one encountered in
fluid flow problems, can be represented using the well known Volterra and Wiener series thereby
allowing computation of an approximate solution to the inverse problem. The impressive
theoretical works of Volterra, Wiener and Urysohn (see Ref. [6]) on the characterization and
approximation of non-linear operators find their full expression in neuromorphic approaches to
inverse problem solving.

Let f and 0 be Lebesgue integrable functions representing the spatio-temporal evolution of
nozzle geometry and temporal evolution of thrust vector angle, respectively. The complex cause-
effect structure that relates nozzle geometry and thrust vector angle can be written as

0 = TtJ) (i)

where T : E - F is a mapping between appropriately defined Banach spaces E and F. The
inverse problem is to determine the map T-1 : F - E such that

f = T*1(0) (2)

Except in certain cases of little practical interest, the precise nature of the operator T is
usually not known. Thus, to solve the inverse problem, we must first characterize the class of
Banach space operators to which T belongs. But, even when T is known to belong (o a certain
class, T - 1 may not exist as a unique map resulting in an infinity of solutions to the inverse
problem. Therefore, we must approximate T - 1 using fairly nice operators that lie close to T in
some sense. Commonly used notions of closeness usually involve LP-norms defined on the
terminal space F:

T2
Norm: 11011, = Jo O1di

(3)

L No rm: IOil_.= -es.vsupl
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Several researchers have shown that infinite neural networks with a single hidden layer can
approximate any Lebesgue measurable function [8, 9]. It has also been shown that L2 (mean-
square integrable) functions can be approximated by a three layer neural network [10]. These and
other powerful results form the basis for applying neural networks to inverse problems. "rhe
canonical procedure for constructing a neuromorphic approximation to the inverse transformation
is to capture topological invariances in the synaptic interconnections and weight structure using a
priori generated training samples. Upon acquiring the invariances, a neural network can rapidly
output a unique solution to any problem instance spanned by the training set.

To illustrate the advantages of a non-Jacobian method, consider a Jacobian based solution
technique to a simple problem involving no unsteady effects. The goal is to find a static nozzle
geometry f so as to minimize

j = (0- 0*)2 (4)

subject to

Tf = 0 (5)

where 3 represents the difference between the calculated and desired thrust vector angles. Under

certain assumptions on T, variational calculus provides the necessary conditions for computing an
optimal nozzle contour. In general, a numerical solution can then be found iteratively from

fnew = fold + K VJ (6)

where K is a gain and VJ is the gradient of J evaluated at fold. However, the disadvantages of

this are:

1. Every time a thrust vector angle is demanded, the flow equations must be solved at every
iter.ation until convergence in order to evaluate the gradient. This requires exceptional
computing power for real-time applications.

2. The cost surface is highly degenerate and has a multitude of troughs. There is no guarantee
that the iteration will converge to an acceptable solution.

3. Perhaps the most important limitation is that the optimal solution depends on the particular
assumptions made regarding nozzle flow. The operator T that describes nozzle flow must be
known explicitly for numerical implementation. Thus, experimental nozzle data cannot be

used.

Consequently, the use of genetic algorithms for neural network design is justifiable. (As alluded
to previously, a parallel research effort is currently underway at the University of Alabama to
design a network using a Jacobian based back-propagation method and will be the subject of a
future paper.)

NEURAL NETWORK DESIGN

Designing a feed forward neural network for real-time thrust vectoring involves two phases:
a supervised training phase and a verification phase. Superxised training entails embedding the
topological invariances in -the synaptic %eight space through repeated presentations of training
samples that characterize the relationship between nozzle contour and thrust vector angle.
Although a single network with a large number of synaptic interconnections can be designed to
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span the wide range of in-flight thrust vector angle requirements (±200), it is not ideally suited
for real-time applications. Instead, designing several small neural networks with fewer real-time
computations, each for a specified overlapping range of thrust vector angle, is more appropriate.
Outputs from two neural networks that span the overlap containing the demanded thrust vector
angle could be linearly interpolated to provide nozzle shapes. In addition to maintaining design
simplicity, this approach has the significant advantage that the two neural networks can be run
parallely, thereby reducing real-time computational requirements.

The feed forward neural network topology used in this study consists of a sigmoidal
activation function, a single-node input layer, a four-node output layer, and two hidden layers
each with four nodes. A schematic representation can be seen in Figure 1. Input to the neural
network is the desired thrust vector angle 0; outputs from the network are polynomial coefficients
(ai, i = 1, 4) that define the contour'of the nozzle's upper wall as

4

(x) = a1 (x - xo)i(X -xf) i + g(x) (7)
jol

where x0 and xf are x-coordinates of the fixed ends of the baseline geometry g(x). Only the
upper nozzle wall was selected for modification to simplify this initial analysis. Thus, the neural
network outputs define an incremental geometry referenced about the baseline.

The baseline nozzle developed for use in this study is shown in Figure 2. The nozzle type
selected was a symmetric, dual expansion ramp nozzle with contourable walls. Concerns factored
into the design were minimum length (to minimize weight) and reduced line of sight onto the
engine hot-section to address observable characteristics, The baseline geometry was obtained
after a number of iterations to insure the best performing nozzle was being used as a reference.
The thrust vector angle of the baseline is zero degrees with a gross thrust coefficient of 0.983. In
this study, a positive thrust vector angle corresponds to a vehicle nose-up pitching moment. It
was assumed that the on-design conditions for the nozzle would be a nozzle pressure ratio of 10,
a flight Mach number of 15, and a fluid specific heat ratio of 1.15. Being essentially a proof-of-
concept, this study was also restricted to a two-dimensional (planar) nozzle to further simplify the
analysis. However, except for an increase in the computational time required, no other technical
challenges would be expected in the step from two to three dimensions.

Thrust vector angles corresponding to a large number of randomly generated, polynomial
nozzle contours were computed using an analysis code based on the inverse method of
characteristics (II]. This code, developed at the University of Alabama, allows for the analysis of
supersonic flow fields internal to a nozzle as well as the supersonic exhaust plume. The code has
been extensively validated with experimental data from NASA and industry. The network design
procedure, however, does not depend on how the training samples are obtained and any method -
numerical or experimental - can be used. Eight neural networks of identical topology were
designed to span thrust vector angles between 50 and 200. For each neural network design, 500
training samples that spanned the corresponding thrust vector angle range were presented to the
network. Synaptic weights that minimized the ensemble error between neural network output (ai,
i = 1, 4) and actual polynomial coefficients (c, i = 1, 4) in the L2 space were determined using a
genetic algorithm. The set of weights displaying the minimum performance index over 25
generations was considered the optimal set of weights.

It must be noted that in an operational version of the neural network, inputs would be a
function of time; whereas during the training phase, constant values of thrust vector angles
constituted the training samples. This brings about a significant advantage of transforming what,
in general, would be a 'dynamic optimization problem to a static network design problem.
However, it is valid only upon neglecting unsteady fluid flow effects caused by dynamic changes
in nozzle contour which is completely acceptable for aircraft thrust vectoring systems.
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NEURAL NETWORK VERIFICATION

A Monte Carlo simulation was performed to verify the neural network design. 500 thrust
vector angles between 50 and 200 were randomly generated. Each thrust vector angle was then
presented to the neural network as an input. Polynomial coefficients obtained as outputs from
the neural network were used to define a nozzle contour. Representative samples of nozzle
contours obtained from the neural network can be seen in Figure 3. The MOC code was then
run to find the actual thrust vector angle for each of the neural network specified contours.
Figure 4 compares the requested thrust vector angle with the angle obtained from the MOC code.
Figure 5 shows the error in the network achieved thrust vector angle. The performance of each
of the eight networks used also can be clearly seen in Figure 5. Thrust vector angles of up to
200 were obtained within an average error of 0.09140 by affecting modifications to the upper
nwzzle wall only. Modifying both upper and lower wallswould cause a very complex flow
structure and could possibly expand the vectoring angle envelope. The maximum error in the
thrust vector angle was 0.37910 which would be negligible in an operational aircraft system.
Further improvements in vectoring performance can be expected to occur by using an Ll type
performance index and running the genetic algorithms in the training phase with an increased
number of generations.

CONCLUSIONS

It has been have shown that neural networks provide a viable alternative to straight
Jacobian based solution methods. They have sig,.ificantly reduced real-time computations while
maintaining accuracy and retaining design simplicity. In addition, although genetic algorithms
may not be ideal for solving the inverse problem of thrust vectoring directly, their utility is
demonstrated by their ability to train a neural network to do so.

The procedure presented here for designing neural networks and the subsequent design of
thrust vectoring nozzles has advantages and disadvantages. Error surfaces encountered while
designing thrust vectoring nozzles are highly degenerate and therefore a robust optimization
scheme such as a genetic algorithm is required for global error minimization. But in problems of
high dimensionality, there are numerical difficulties in using genetic algorithms, limiting the
complexity of the simulated function and the size of the network that can be trained. Jacobian
based back-propagation, for example, may reduce the training period significantly and would
have no difficulty handling large dimensions. However, as with other gradient techniques, back-
propagation is prone to converge to a local minimum, thereby converging to an incorrect network
design or not converging at all. Further study is recommended to put these concerns to rest.

Finally, there are two competing aspects to neural network design - accuracy and
generalizability - which need to be addressed. Accuracy has to do with how close is the
approximation obtained using the neural network. Generalizability means that a neural network
can interpolate and extrapolate beyond problem instances spanned by the training set. The
performance indices used in this study do not reflect generalizability. It would be of
considerable interest to develop performance indices that provide a balance between the two
aspects and then redesign adaptive neural networks for thrust vectoring. In this study an off-line
design method, wherein the entire training set is presented to the neural network at one time, was
used; an on-line or adaptive neural network capable of learning while in operation would be
better suited for practical applications.
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ABSTRACT

In structural redesign, two structural states are involved; the baseline (known) State S 1 with
unacceptable performance, and the objective (unknown) State S2 with given performance
specifications. The difference between the two states in performance and design variables may be
as high as 100% or more depending on the scale of the structure. A Perturbation Approach to
Redesign (PAR) is presented to relate any two structural states S1 and S2 that are modeled by the
same finite element model and represented by different values of the design variables. General
perturbation equations are derived expressing implicitly the natural frequencies, dynamic modes,
static deflections, static stresses, Euler buckling loads and buckling modes of the objective State
S2 in terms of its performance specifications, and State Sl data and FEA results. Large
Admissible Perturbation (LEAP) algorithms are implemented in code RESTRUCT to define the
objective State S2 incrementally without trial and error by postprocessing FEA results of State S I
with no additional FEAs. Systematic numerical applications in redesign of a 10-element 48-d.o.f.
beam, a 104-element 192-d.o.f. offshore tower, a 64-element, 216-d.o.f. plate, and a 144 element
896-d.o.s. cylindrical shell show the accuracy, efficiency, and potential of PAR to find an
objective state that may differ 100% or more from the baseline design.

I. INTRODUCTION

Several problems in analysis, design, and modification of a structure or a structural design
can be stated as redesign problems. Those are two-state problems involving the baseline State S I
and the objective State S2. S1 is known and has beer. modeled and analyzed by FEM. In the
event that the performance of State S I is unacceptable, the objective State S2 must be defined to
satisfy performance specifications. The Perturbation Approach to Redesign (PAR) developed in
this work can relate any two structural states that can be modeled and analyzed by the same FE
model. PAR has the potential to perform redesign in the sense of resizing, reshaping, and
reconfiguration to satisfy any performance requirements that can be predicted by FEA including
modal dynamics, static deflections and stresses, and global buckling. LEAP algorithms
implemented in code RESTRUCT (REdesign of STRUCTures) [3] presently can handle resizing
for natural frequencies, mode shapes and static deflections.

Figure 1 shows several two-state problems that appear in the analysis-design-redesign
process following a basic FE analysis. In analysis, the following two-state problems are
encountered: (P1) Model correlation [28], (P2) Derivation of global failure equations [1, 14], (P3)
Failure point identific;-tion [14], (P4) Redundancy [14], (P5) Reliability, [4], (P6) Non-
Destructive-Testing [24]. In design, the following two-state problems are encountered: (P7)
Redesign for target performance [1, 2, 11, 12, 24, 26, 27], (P8) Redesign for target redundancy,
(P9) Redesign for target reliability.

LEAP theory was developed during the past seven years from the linear perturbation
techniques introduced by Stetson in 1975 [26, 27] and modified by Sandstrom et al [24]. They
redesigned a structure for both natural frequency and mode shape objectives but allowed only
small differences between the baseline and objective states. In that respect, linear perturbation
methods are equivalent to design sensitivity methods. Nonlinear perturbation methods [11, 12]

[allow for large differences between the two states. The objective state is found by postprocessing J
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F dataof the baseline structure only, using an incremental prediction correction scheme [11.1

Presently, research efforts are directed towards two goals. The first one is to redesign larger scale
structures as far away from the baseline structure as possible before a second FEA is needed.
Large admissible perturbations [1] updating only cognate modes [2] in an incremental process are
used towards that end. Substructuring is also investigated for that purpose, as well as for
reshaping and reconfiguration. The second goal is to implement more and different objectives and
derive the corresponding general perturbation equations. LEAP algorithms are under development
for static stress, global buckding load, and buckling mode objectives.

The problem of redesign by large admissible perturbations is analyzed in Chapter H. Several
two-state problems mentioned above are stated as redesign problems in Section II.1. The
Perturbation Approach to Redesign (PAR) is presented in Section 11.2 and LEAP theory for
development of solution algorithms is summarized in Section 1.3. Many numerical applications
using four different structures are presented in Chapter III to assess the present status of code
RESTRUCT, and the potential and limitations of PAR.

II. REDESIGN BY LARGE ADMISSIBLE PERTURBATIONS

A simple modeling-analysis-design-redesign process for structures using FEM is shown in
Figure 1. Rectangular blocks indicate two-state problems which can be formulated as redesign
problems using PAR and solved efficiently by a LEAP algorithm. Shaded blocks indicate
problems already solved in some form by code RESTRUCT. Some of those problems are
discussed below.

II.1. Redesign and Other Two-State Problems

The classical structural redesign problem appears in Figure 1 after analyzing either the original
or the correlated FE model. Undesirable response - such as a natural frequency in the range of
wave excitation, a dynamic mode with high amplitudes near the free surface where wave and
current loads are maximum, or high stresses and deflections - makes redesign mandatory. The
performance specifications of the objective design are desirable values of those response
particulars.

After placing a structure in service, tests are performed to measure its performance and
compare it to FEM predictions. In the modelit~g process, simplifying assumptions, uncertainty,
and ignorance result in discrepancies between measurements and predictions particularly for
marine structures which have large manufacturing tolerances. The process of finding a FE model
of a physical structure that will correctly predict measured structural response is called model
correlation. The initial FE model is the known State S1. The objective State S2 represents the
unknown correlated FE model. The Perturbation Approach to Redesign presented in the following
section preserves element connectivity and changes geometric properties so that the correlated
model represents a real structure [2]. That is, PAR does not change simply numbers in the mass
and stiffness matrices. PAR can also solve the problem of model correlation for geometry
dependent hydrodynamic load [28].

The problem of failure point identification can also be formulated by PAR and solved by a
LEAP algorithm. S1 represents the initial structural state and S2 the unknown failure point
(design point in reliability terminology) on a limit surface [10, 20]. The advantage of PAR is that
it can provide an implicit expression for a global failure criterion by relating State S2 to S 1.

Related is the problem of reserve and residual redundancy. In the literature, several different
aspects of redundancy are presented as definitions depending on the type of structure and analysis
performed [5, 6, 21]. PAR remedies this lack of invariant and consistent redundancy c ,inition by
introducing a redundancy injective mapping [14] defining the difference between the initial intact
or damaged structure and the design point.

Finally, a new methodology for reliability analysis and design of large scale structures is
under development based on PAR [4]. The Perturbation Approach to Reliability provides an
alternative to the systems approach [5, 21, 29] and the stochastic FEM [19, 30] which are the two
most popular methods in structural reliability. PAR makes possible the introduction of advanced

L structural analysis in the reliability computations without simplifying the structure. PAR also]
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F allows randomness in geometry, material, and load. There is no limitation to the number of]
random variables used and the random load need not be applied incrementally until structural
failure. The reliability analysis problem is a two-state problem where S 1 is the initial structure and
S2 the design point.

PAR can also address the very difficult problems of target redundancy and target reliability
design. S I is the initial structural design of inadequate redundancy or reliability and S2 is the
objective structure of specified redundancy or reliability [4]. These are difficult design problems
because redundancy and reliability are not computed by FEM. PAR can solve these problems
because of the introduction of an injective mapping relating S 1 to S2.

11.2. Perturbation Approach to Redesign (PAR)

The PAR methodology has been developed to solve the above two-state problems. It has five
major steps: Step 1: A Structure (SI) is modeled and analyzed by a general purpose FE code;
MSCINASTRAN is used in our work. So far, four types of analysis have been considered in
PAR and the governing equations are listed below. For modal dynamics the free vibration
equations for S I are

([-cotm])[Vjj={0} for j=l,2,...,n , (1)

where the n eigenvalues coj , j=l,2,...,n satisfy equation det([k]- 2[m])=0 . In equation
(1), damping tray be included only in Rayleigh's form and added mass is included in [m] . For
the static deflections and stresses of S I we have

[k] (u} = (f (2)

and () = [S] [k] "1 {f) , (3) [S] = [G] [D] [N] , (4)

where [G], [D], [N] are the stress-strain, strain-displacement, and shape function matrices. The
governing equation for global buckling in finite elements is

([ko]+[k.)Vb} = ,0 , (5)

where [ko] and [k.] are the small displacement and initial geometric stiffness matrices.
SIM2: The following perturbation relations are introduced relating State S2 to Sl

[k']=[k]+[Ak] (6) [m']=[mI+[Am] , (7)

2= -2.. + [-A(o 2)... , (8) [0'] = [0] + [A0] , (9)

where unprimed and primed symbols refer to the baseline (Si) and the objective State S2,
respectively, and prefix A indicates difference between counterpart quantities of states S I and S2.

['] =[{M I,1 1W}2,1 "{'V}nl' is the matrix of eigenvectors of SI and ["co2...j is the diagonal
matrix of the corresponding eigenvalues. Perturbation relations pertaining to equations (2) and (3)
are

{u') = (u) + (Au) , (10) {f') = {f) + (Af) , (11)

W'} = () + (A}l , (12) [S'] = [S] + [AS] (13)

For the global buckling eigenvalue problem we have

L [ko]]=[ko]+[Ako] , (14) [k]=[kc]+[Aka] (15)
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F Pcr ]= Pcr ]+[ APcr ] , (16) []11=[b]+[A#b] (17) 1
Further, in Step 2, desirable values of some response particulars of S2 such as natural
frequencies, static deflections and mode shapes are specified. An incomplete set of mode shapes
may be used and only some degrees of freedom may be defined in each mode.
Ste 3: The differences in'structural properties between S 1 and S2 areexpressed in terms of the
fractional changes ae,e=l,2,...,p of p properties of elements or groups of elements as:

P P P P
[Ak]= X[Ake]= [ke]ae , (18) [Am]: = [AmeJ=jEme]a , (19)

e=l e=1 e=1 e=1
P P

[AS] = [ASe] = [NN (20)
e=l e=1

Several aes may refer to the same element but different properties such as bending, torsion, and
stretching. The unknowns in the process of defining S2 from its specifications and S1 are the
fractional changes %. When the aes are defined it is ensured that element connectivity in the
FE model is preserved and S2 represents a real structure.

t p4: The differences in structural response between states SI and S2 are expressed implicitly in
terms of the czs by the general perturbation equations. For modal dynamics we have

p
S({i'i[ke]['}i -0i2 {NVI'[me]V'}i) ae = 0)[2 {w'} r[]{'} i - {'}T[k]{V'}i , (21)

e=I
[k= -{'}[k]{tV'}i (22)

e=I

{VjT[me]{V'icze =-{v'} [m]{ 1 i , (23)

for i l j --- i+1, i+2,...,n [1, 2] . Equation (21) represents the n diagonal terms of
the ener y balance ecuation ["K 1- -["M' l[' -2 =0 for S2, that is, the Rayleigh quotients for

I . Equations (22) and (23) represent the orthogonality conditions of modes {q'}i with

respect to [ki and [ml . Theoretically, orthogonality of modes with respect to one of [k] or
[d] implies orthogonality with respect to the other. Numerically, however, both conditions must
be forced if {N')j, j=l,2,...,n, are to represent modes of a real structure.

The general perturbation tquations for static deflections are derived from the counterpart of
equation (2) for structure S2 based on the modal dynamic expansion of (u') in terms of the

unknown modes {'}j,j =1,2,...,n . Thi., inversion of matrix [k'] is avoided. Linearizing

only the explicit dependence on the aes, we have [1, 15]

' .,'im A m  p n. " M where (24)2 me'aeUiml " Bm B ~|, m e
/= I e=l rm=l -I

Am = (V'jm fj), Bm= {N'}T[k]{I'}m , Cm.e ={v}[k]{I'.
j=1

The general perturbation equations for static stresses are derived in a similar manner [14]

{ [ [mn l 'B Am p fn .irArn 2/{ACF} =-{O}l+ [S]+I [Se]ae Yd-im-m _7/'ZX Ya imd 2"r m. ae (25)

L = = n e=l rm=l m
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FFor globaHbuckling, the general perturbation equations are derivedusing the same method as in 1
the case of the-modal dynamics eigenvalue problem [14]
P Tie=II

{ '}i([kc ]- Pikd0 ]){'ib1 }ie = {1b }iT (Pi[ko ] -[kc ]){fb }i (26)
e=1-

P T [V, (7I {JV,}j [kc]JVJ i a(27)
e=1
P TTIV' Ij [ka, [V' Ji (xe = -f' I -Tka [V'}i (28)

e=l

for i = 1,2,...,n , j=i + 1,i + 2,...,n, where [kc] = [ko] - [kOF] , kaF includes the body force,
and [k.r] =- Pi[kao] - [kaF].
5c..: In this final step, the problem of finding State S2 based on its specifications and results of
FEA for S1 is formulated and solved for the p unknown ces using the LEAP algorithm
presented in the next section. The problem formulation is as follows:

Minimize 11x112 e 90 , (29)

subject to n. natural frequency objectives cof 2 , i = 1,2,...,n,) ; n normal mode objectives

*joi , number of (k, i) = no ; nu static deflection objectives uf , i=l,2,...,nu ; n. static stress

objectives o , i=l, 2 ,...,nO; nb global buckling eigenvalues Pi' , i=l, 2 ,...,nb ; n buckling

mode objectives 4 , number of (k,i) = nob ; 2p lower and upper bounds on the redesign

variables Ce, -1 , ae o .e ce  , e=1,2,...,p, na admissibility constraints extracted from

equations (22) and (23). where na , _ - - , -I) ] • "..A as.. .. -zk--r / "'&W-" n'(A -""' ao
i=l

admissibility constraints extracted from equations (27) and (28), where
nb

nab = 2X (nr - i) = nb[(2nr - 1)- nb] . All of the above redesign objectives are substituted in
i=1

the appropriate general perturbation equations (21)-(28). The remaining unused general
perturbation equations may be used to predict the unspecified performance particulars of the
objective State S2. Accuracy of those predictions, however, it not as high as those of the redesign
objectives. All the constraints of the above problem may result in an empty, non-empty, or
countable feasible domain. In the first case, the redesign objectives cannot be achieved for the
selected set of redesign variables, in which case a minimum error solution.in satisfaction of the
redesign objectives is achieved by a generalized inverse algorithm [1, 2, 11, 15]. In the second
case, an optimum solution is achieved using an optimality criterion (29).

11.3. LargE Admissible Perturbation (LEAP) Algorithm

The redesign problem formulated by PAR in Section 11.2 can be solved by a LEAP algorithm.
Many LEAP algorithms have been developed to so!ve a variety of two-state problems [1, 2, 14,
15, 28] and have been documented in detail. Suffice to present here the basic steps and difficulties
of the solution algorithm. The LEAP algorithm developed to solve the redesign problem is

[ outlined in Figure 2. It starts from the baseline structure (S 1) and reaches iiicrementally thej
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[objective S2 by prediction and correction. In the prediction phase of the algorithm, the small 1

perturbation method [24, 26, 27] is used. The modal dynamics general perturbation equations are/
linearized. For that purpose, increments are limited to 7% differences between S2 specifications
and the corresponding S I properties. Predictions are small but inadmissible because admissibility
conditions (22) and (23) are linearized. In the correction phase, perturbations are corrected by
satisfying the nonlinear general perturbation equations and are forced back into the admissible
space by satisfying the nonlinear admissibility conditions. The total CPU time for redesign may
be reduced by a factor occasionally as high as 4 when in the first increment the space of cognate
modes is identified and thereafter all computations are performed in that space. Such is the case
for torsional redesign [2] of the of'shore tower in Figure 5. Torsional modes (3, 18, 19)
constitute one cognate subspace with very weak interaction with other modal subspaces such as
those for bending and stretching.
In each increment, in both phases the resulting problem may be underdetermined or
overdetermined depending on the relation between the number p of redesign variables ae, the
number of equality constraints (S2 specifications) n = n(, + no + nu + n. + nb + n4b + na + nab,
and the 2p bounds on the aes. When the problem is overdetermined, a minimum error solution
in satisfaction of the S2 specifications is produced by a generalized inverse algorithm. When the
problem is undetermined, it is solved by optimization using the minimum change criterion in
equation (29). To achieve this global objective, at each increment the following objective is
minimized p I t-1"I

min [(1+1, l-(l+qe) - (30)

e=lI q=1
The problem is solved by quadratic programming [8] or sequential quadratic programming [7]
depending on whether the expression for [Ak] is linear as in equation (18), or nonlinear as in the
case of plate and shell redesign. In those cases, the plate or shell thickness is selected as redesign
variable resulting in a cubic expression for [Ak] in terms of the aes. [AS] is always a nonlinear
expression of the ces because [Se] depends on the distance of the point where the stress is
computed from the neutral axis. The LEAP algorithm is implemented in code RESTRUCT
(REdesign of STRUCTures) [3]. It is 27,000 FORTRAN 77 commands and may serve as a
postprocessor to any special or general purpose FE code. We presently use it to postprocess
MSC/NASTRAN.V64 data on the secondary (UB) main frame computer (IBM-3090) of the
University of Michigan.

The LEAP algorithm outlined above finds the optimum objective structure 52 without trial and
error and with no additional FEAs. The [k] matrix inversion required in static deflection and stress
redesign is avoided by using modal expansions as shown in equations (24) and (25). Thus, an
accurate modal basis is mandatory even as S2 moves far away from S1. LEAP algorithms can
surmount the following three difficulties as well. All general perturbation equations (which
become equality constraints in the optimization problem) are strongly nonlinear implicit
expressions of the redesign variables ae . The static force vector (f') may depend on the
structure's geometry (e.g. hydrodynamic loads) and consequently change in the redesign process,
Finally, the set of specifications provided for S2 are usually incomplete and only some d.o.f.s of
specified modes are defined.

III. NUMERICAL APPLICATIONS

A total of 42 numerical applications are presented in this section on optimal redesign of four
different structures [22, 9, 31]. Results are summarized in Tables 1, 4, 5, 6 and show the
accuracy of code RESTRUCT for applications with number of redesign variables ranging from 8
to 21; natural frequency and mode shape redesign objectives changing by a factor ranging from
0.3 to 2.0; degrees of freedom ranging from 48 to 896. For each redesign objective, Tables 1, 4,
5, 6 show the objective value, the value actually achieved as computed by reanalysis with
MSC/NASTRAN and the corresponding relative error. CPU time and numbers of extracted
modes nr, admissibility conditions na, and redesign variables are also shown. The values of the

L redesign variables of the optimum solution are not shown. The optimal solution appears in thej
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F form-of optimal Eucledian norm of the aes in Tables 5 and,6; and in the form of the Hasover-]
Lind reliability index [10,in Tables I and 4.
10O-element 48-d.o.f. beam: The clamped-hinged beam in Figure 4 is subjected to a uniform load
in the y direction and a concentrated load applied at node 7 in the z direction. (01 = 183.092
rad/sec, the horizontal and vertical deflections at node 7 are v7 = 12.151 mm and w7 = 17.733
mm as computed by MSC/NASTRAN. Redesign variables and structural groups are shown in
Table 2. The accuracy of the redesign process is shown in Table 1 for one, two or three
simultaneous redesign objectives. The problem of reliability analysis is studied assuming
randomness in geometric properties, A (area), Iy, Iz (moments of inertia), and material properties
E (Young's modulus) and p (density). The fractional changes ae are assumed to be
independent normal random variables of zero mean. Standard deviations are selected as aaEI =

0.40 ror bending rigidities EI and EIz , and Oa = 0.30 for mass per unit length pA. In
order to compute the probability of failure to first (FORM) or second (SORM) order [20],
computation of individual and joint design points and the corresponding Hasover-Lind reliability
index I3 is required as shown in Figure 3. Computation of 3 is achieved by transforming the
cs to independent standard normal random variables through the Rosenblatt transformation [13].

These numerical applications as well as those following on the offshore tower show that large
admissible perturbation methods can introduce sophisticated structural analysis in reliability
without simplifying the structural model and without repeated FEAs [4].
104-element 192-d.o.f, offshore tower: The offshore tower shown in Figure 5 is 69.95 m high
and operates in 45.72 m water depth. The tower at the base is square with a 38.1Om side and
tapers linearly to 22.86 m at the deck. The. FE model of the tower is composed of 104 circular
tubular beam elements and has 192 dofs. Loading on the tower is due to: (i) 240 tonnes deck load
which is applied to the structure as uniformly distributed load at the deck nodal points. (ii) Wave
hydrodynamic forces calculated for a design wave of 182.88 m length and 6.10 m height using
Morison's equation. The wave propagates in the x-direction. (iii) Wind generated water current in
the x-direction with linear velocity profile of 1.03 n/sec at the mean free surface waterline and zero
at the sea bed. (o1 = 0)2 = 4.695 rad/sec for the first bending modes in the XZ and the YZ
planes. (o3 = 5.353 rad/sec for the first torsional mode with respect to axis Z . Redesign
variables and structural groups are shown in Table 3.

Failure states are defined by deterioration factors in the first and third eigenvalues of 1.54 and
2.00. Geometric and material properties are random. The fractional changes aes , shown in
Table 3, are assumed to be independent normal random variables with zero mean. Standard
deviations are selected as GaEI = 0.40 for bending rigidity El and GapA = 0.30 for mass per

unit length pA. Design points are again computed by postprocessing FE analysis results for the
baseline design only. It should be noted that both in Tables 1 and 4 the computed 5 are very high
because the external load is deterministic and limit states were pushed as far away from the
baseline design as possible in order to demonstrate the accuracy and limitations of code
RESTRUCT.
64-element 216-d.o.f. plate: The clamped-free-free-free plate in Figure 6 is subjected to a uniform
load p and has the dimensions and properties shown in the figure. Its response is computed by
MSC/NASTRAN and redesign is performed by RESTRUCT. The incremental optimization
problem is nonlinear and solved by sequential quadratic programming [7] because [Ak] is a cubic
expression of the ces which represent fractional changes of the plate thickness [17, 22]. The
plate is subdivided into 8 structural groups each containing 8 finite elements. Results of redesign
are summarized in Table 5 and show very high accuracy even for changes by a factor of 2 in
eigenvalues and maximum deflection.
144-element 896-d.o.f. cylindrical shell: The simply supported shell shown in Figure 7 is
subjected to hydrostatic pressure load p due to 286 meters submergence in salt water [23].
Dimensions [25] and properties are also shown in the figure. Its modal dynamic and static
deflection response is computed by MSC/NASTRAN [16, 18]. The optimization problem in each
increment is nonlinear and solved by sequential quadratic programming [7]. The cylindrical shell

L is subdivided into 5 structural groups and even though symmetry is riot forced by linking
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Fsymmetric groups (1 and 5, 2 and 4) as was done in the plate redesign problem, symmetry was]
preserved in the redesign process. Results of code RESTRUCT are summarized in Table 6 and
show good accuracy even for changes by a factor of 2 in eigenvalues and deflection.

In all of the above applications, the LEAP algorithm in RESTRUCT can be pushed further by
taking additional incremental steps if higher errors are considered acceptable. For higher accuracy,
however, one more FE analysis may be used after about 10 increments.

CONCLUDING REMARKS

Several two-state problems in structural analysis, design, and redesign can be formulated by
PAR (Perturbation Approach to Redesign) and solved by a LEAP (LargE Admissible Perturbation)
algorithm. The objective structural design is found incrementally without trial and error or
repeated FEAs for differences in response from the baseline design of the order of 100% or more.
In structural reliability, PAR provides an attractive alternative to Stochastic Finite Elements and the
Systems approach.

Computer code RESTRUCT which implements the large admissible perturbation
methodology, is being developed since 1983, has been tested thoroughly and has generated
confidence in its potential to solve two-state problems. Several theoretical and numerical
developments are under way. New types of finite elements are being introduced; new structures
are being redesigned, such as stiffened plates and shells; new two-state problems are studied, e.g.
submarine acoustic noise reduction, redesign for buckling objectives, redesign for stress
objectives; a perturbation approach to reliability analysis and design is being developed; larger
scale structures are being redesigned by postprocessing FEA results by MSC/NASTRAN.V66
which has superelement capability. For that purpose, a supercomputer version of RESTRUCT
running on the San Diego supercomputer has been developed.
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Figure 5. 104-element, 1192-d.o.f. offshore tower
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L case. 4.7,13, 15, and 17 are solved by the generalized inverse algorithm. *FS.= RFilure Swj
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Table 2. 10-element 48-d.o.f. clamped-hinged beam Table 3. 104-element, 192.d.o.f. offshore tower: structural 1

structural groups and redesign variables groups, redesign variables, and dimensions

rStructural 1 lmet] Sructural Redesign D.~~ D. Number 1l
Group # Redesign Variables, ;p =21 e Group # Variables o, Dsr(mlt o O ) W elements jSRedsig Var , 03 p 2 211 ao (QEI) Legs belo first 0.762 0.737 601(OV.) , 02 '(Oh) ,03 (PA) 1,2 02 (AA) bracing

2 a4 (OE/l ) , as (oEi.), 
0

6 (QpA) 3,4 2 03 (art) Legs between first 0.610 0.584 8
3 07 (oQE1.) . CS (aEl,) 09 (0,A) 5 04.(QA) and second bracing4 010 (EI), Oi (OE,.), a12 (oA )  6 3 O (GE,) Legs abose second 0.6310 05S4 16

5 0)3 (0E, ) 014 (0E1.) 0 1s (OPA) 7 06 ( ,A) bracing
6 016 (ag) , o17 (OEI,) 0 18 (OpA) 8 a a- (CEl) Horizontal ' 0.483 0.464 32
7 01) (E,,) 0 (OV , 21 (OpA) 9. 10 0,G (oA,) bracing

5 09 (*E,) Horizontal cross 0.508 0.489 16
10 (*A) bracingi

6 oil (aE!) Vertical crms 0.610 0.591 24
_ 012 (01A) bracing I

Table 4. Redesign and reliability of offshore tower

Case I!w Wr'J3j 3 P I CPU In an
# I F.S." Reanalysis Error(%) F.S.* Reanalysis Error(%) (msec) I
1 0.6598 0.6531 -1.018 - - - 4.43 973814 18 8
2 - - - 0.6598 0.6530 -1.030 3.8 925711 19 8
3. 0.6598 0.6547 -0.786 0.6598 0.6541 -0.871 9.37 985832 18 8

11 0.5000 0.4871 -2.572 - - - 8.03 1589439 18 8
12 - - - 0.5000 0.4844 -3.112 21.47 1529708 19 8
13 0,5000 0,4895 -2.100 0.5000 0.4877 -2.462 13.7 1617425 18 8

p = 12; cases 12 and 13 are solved by the generalized inverse algorithm. *F.S. = Failure State

Table 5. Redesign of 64-element 216-d.o.f. plate

Case ~ ]' W, M/w2 I U' 'UMG5  oft )~ ICPU1
# IGoal Reanalysis Error(%) Goal Reanalysis Error(%) I Goal Reanalysis Error() (sic)
1 1.2867 1.2844 -0.177 - .. 0.0267 263
2 2.0000 1.9818 -0.909 - - - - 0.2354 713
3 - - - - 0.7579 0.7633 0.718 0.0358 420
4 - - - - 0.5000 0.5069 1.374 0.2794 1044
5 1.2867 1.2842 -0.195 - - - 0.7772 0.7818 0.594 0.0295 440
6 2.0000 1.9801 -0.997 - - - 0.5000 0.5664 1.289 0.2816 1199
7 1.2867 1.2848 -0.144 1.1589 1.1572 -0.140 - - - 0.0275 381
8 2,0000 1.9848 -0.760 1.5000 1.4875 -0.831 - - - 0.2407 1037
9 1.2867 1.2840 -0.204 1.2867 1.2788 -0.621 0.7772 0.7821 0.631 0.0549 562
10 2.0000 1.9747 -1.264 2.0000 1.9198 -4.011 0.5000 0.5077 1.531 0.4378 1532
11 1.3195 1.3157 -0.287 1.3195 1.3103 -0.697 0.6598 0.6649 0.787 0.1561 833
12 2.0000 1.9721 -1.395 2.0000 1.9341 -3.397 0.3536 0.3600 1.831 1.2394 2072
13 1.2867 1.2844 -0.173 1.1589 1.1574 -0.125 0.7772 0.7817 0.577 0.0297 562
14 2.0000 1.9806 -0.971 1.5000 1.4941 -0.395 0.5000 0.5063 1.259 0.2817 1528
15 1.3195 1.3093 -0.774 1.1761 1.1691 -0.591 0.6598 0.6678 1.224 0.1618 832
16 2.0000 1.9104 -4.479 1.5000 1.4408 -3.950 0.3536 0.3710 4.945 1.3025 2065

In all cames, n, = 7,n. = 5,p = 8.

Table 6. Redesign of Simply Supported Cylindrical Shell

ICase .___ 'WD2 CPU
Goal Reanalysis Error(%) I Goal Reanalysis Error(%) Goal Reanalysis Error(%) (s c)

1 1.3310 1.3200 -01.900 - 0.-__5867 549
2 1.5700 1.5300 -2.700 - .. ... 1.3300 715
3 1.9171 1.7800 -7.000 - .. .. 2.4800 1077
4 1.9171 1.7800 -7.000 1.6700 1.5000 -9.000 - - - 2.486 ]2031
5 1.331 1.3200 -0.900 - - - 0.6480 0.6610 2.000 0.5790 940
6 , 1.9171 1.7800 -7.000 - - - 0.648 0.646 0.00 1 2.486 2131

L In all cases, n, = 5,n. = 5 
j
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F" "STRUCTURAL DAMAGE IDENTIFICATION USING 1
MATHEMATICAL OPTIMIZATION TECHNIQUES

Mo..fHow Herman Shen
Department of Aeronautical and Astronautical Engineering

The Ohio State University

Abstract

An identification procedure is proposed to identify the damage characteristics (location and
size of the damage) from dynamic measurements. This procedure was based on minimization of
the 'mean-square' measure of difference between measurement data (natural frequencies and mode
shapes) and the corresponding predictions obtained from the computational model. The procedure
is tested for simulated damage in the form of stiffness changes in a simple fixed-free spring-mass
system and symmetric cracks in a simply-supported Bernoulli-Euler beam. It is shown that when all
the mode information were used in the identification procedure it is possible to uniquely determine
the damage properties. Without knowing the complete set of modal information, a restricted region
in the initial data space has been found for realistic and convergent solution from the identification
process.

Introduction

There is a considerable body of research on identification problems, that is, the problem of
identifying the engineering properties or reconstructing the structural configuration of a vibrating
system from certain natural frequency spectra and/or corresponding mode shape. Such problems
were considered by Barcilon [1, 2], McLaughlin [3, 4], Gladwell [5-7], and Gladwell et al. [8]. Most
of these studies involve the determination of material properties from natural frequencies, and
they emphasize the existence, uniqueness, and methods for determination of properties (termed
'reconstruction').

An detection procedure was developed by Shen and Taylor (9] to determine the crack character-
istics (location xc and size cr of the crack) of Bernoulli-Euler beams from their dynamic response.
The idea of this procedure was related to methods of structural optimization. Specifically, the
structural damage was identified in a way to minimize one or another measure of the difference
between a set of data (measurements) Td, and the corresponding values for dynamic response Aid
obtained by analysis of a model for the damaged beam. This may be expressed symbolically as the
following optimization problem:

min norm(Td - AMd). (1)
Xccr

Naturally, the minimization represented here is constrained by the equations which model the
physical system. Moreover, as indicated in the discussion by Shen and Pierre [10, 11], one can
note that the more modal information used for crack detection, the more accurate and reliable the
result that can be achieved. For practical purposes, the objective of Eq. (1) was formulated based
on a certain set of specific modes; specifically the first three modes are considered in the inverse
procedure.

In this study the corresponding to the mean-square measure of the norm, as shown in Eq. (1),
is examined. The identification process is based on minimization of the 'mean-square' measure of
difference between measurement data (natural frequencies and mode shapes) and the corresponding

1predictions obtained from the computational model. The identification procedure is tested for
J3
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rimulated damage in the form of a symmetric cracks in a simply-supported Bernoulli-Euler beam]
and a fixed-free spring-mass model. The uniqueness and reliability of the identification process, is
confirmed by solving several damage identification examples with specified damage positions.

Problem Statement

In this section, variational formulations for the identification of damaged one-dimensional
structures are presented. The mean square differences between measured and modeled values of
frequency and mode shape are employed as the objective function in one of the formulations. In
other words, the inverse process seeks to determine the damage parameters, location xc and size
cr, in the mathematical model to minimize the mean square difference between the test data and
analytical predictions. The problem.formulations are presented in forms of a cracked Bernoulli-
Euler beam and a multi degrees of freedom (DOF) spring-mass system.

Cracked beam model
In the treatment of this problem, it is assumed that the testing information (data) is provided

from certain test points distributed over the structure. This data is comprised of frequency and
mode shape information associated with the lower several response modes.

For a simply-supported uniform beam containing one pair of symmetric cracks (see Fig. 1),
the problem of optimization in crack detection can be expressed, in terms of comparisons between
modeled response and test data, as

min [norm(w 2 - w , Wga(Xjn1) w1(XI22)) (2)

subject to constraints that define the beam response w, (ie., the equations for fiee vibration), and
which prescribe appropriate normalization of we and test data wui.

Here cr = r represents crack ratio (a measure of crack depth), and xc identifies crack
position (see Fig. 1). Also, the objective function measure of differences between measured and
modeled values of deflection and frequency in Eq. (2) is stated for present purposes in the form:

Mf T
norm(w, - w, wta - w) = ..,[(w, - w;)" + L (w,,(xg,,,) - wa(xt,,))2]) (3)

where w,, wo represent the natural frequency and mode shape of ath bending free vibratior
mode, M is the number of modes for which test information is available, and, once again, the
corresponding test data are symbolized by wic, and w,,. Here xi... (m = 1,2, ...,T) locates the m-th
out of T measure stations, respectively. The measures Wt, and vc, that appear in the norm must
be normalized on a common basis in order to facilitate comparison between the data and model
values.

The symbol 4) is introduced to represent the square of the norm given in Eq. (3). The
identification problem now can be stated:

min 4) (4)

subject to:

{EIQ(w"(x))2 -w2pA wc(x))dx = 0 (5)

T-1

- 0 0 (6)L ,,m=2
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F (cr + axc) - R < 0 (7)1
cir < cr < Tr (8)

Xc < xc < T? (9)

where cf3=1,...,M, a is a weighting factor on the cr and xc, R represents the upper bound on
value cr +,axc, and 7'cc, and U"f, cr represent the upper and lower bounds of the crack (damage)
parameters xc and cr, respectively. (Note that both upper and lower bounds on the variables cr
and xc are necessary in the present problem.) Since w,, comprise an orthonormal set, it,,q is defined
as

T-1

S. 2= 1"I, A,,, lim 7oO = 0 for Qa/ 3  (10)a T-oo
m=2

The effect of cracks on the structural properties of the beam is reflected by factor Q in Eq. (5),
as described for symmetric surface cracks in Shen and Pierre [10]. In other words, the optimization
parameters xc and cr cited in Eq. (4) enter the problem via Q.

According to the K-K-T (Kurash-Kuhn-Tucker) necessary conditions for the optimization
problem Eqs. (4-9), there exist Lagrange multipliers Ao, , Aop, and rk which satisfy the following
equations (the notation 'I.' refers to solution points):

Aa > 0

AO > 0
r, [(cr +.xc) - R] I=q(1

[r2 (L_ -cr)] 1.= 0 (12)

[r3 (Xc- Y)] I.= 0 (13)
[r4 (c- Xc)] I.-= 0 (14)

[rs (cr- Vr)] I.= 0 (15)

The solution must satisfy the following three equations as well:

[2(W2 - w ) + A.pAC.] 1.= 0 (16)

[(EIQw"(x))"-w.pAw,(x)] .= 0 ;xt,, < < (,+) (17)

T-1 0-1

E 2(t_,x - wo(x)) + [MoAowo(x) + ZAoowa(x)
m=2 --

W~,, IVXM

+ ~~ xAowo(x)]Axm + 2Ao[(EIQw(x))"- pAwa(x)I) I=,I= 0 (18)

Note that the above equation of motion (Eq. 17) is valid interval by interval over the span of the
structure.

Finally, the conditions for stationarity of 4 w.r.t. the optimization variables cr and xc (ie.,
the optimality conditions) are:

Aff O Q ( ., X )
"A,(EIJ dx) + ri - 12 + r 5 I.= 0 (19)

a=0 oOcr
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[E A[(EI]o -(w"(x)) dx)+ ri_ + r 3 - r4 I.= 0 (20)1
a=1

The problem formulation for the numerical method-meansquare criterion
The purpose in this subsection is to re-state the inverse cracked beam problem with mean

square criterion, Eqs. (4-9), in the following form that is more convenient for computational pur-
poses. With the introduction of symbols and T for convenience, the statement becomes:

M T
min '[(,a - ,)2 + L (wti(Xtm) - wa(xtm))2 ]  (21)

-L =1 M=l

subject to
T T

[a4Q E (W-(Xm)) 2 - C. (w.(Xtm)) 2IAxtm - T. = 0 (22)
m=1 m=l

T-1

E (Wo(XM)w(x,,))Ax,. - #= 0 (23)
m=2

0 < cr < 1.0 (24)

0 < Xc < 1.0 (25)
where a, /i =1,...,M, variable vector 1 = {cr,Xc,&0,w 0 (Xf,,)),

w1pA 
(26)

and
T T

To = [aQ E (,,,,(xtm)) Ea (,,,,o(xt,,) 2 ],xm (27)
m=1 m=1

Spring-mass model
The spring-mass model to which the present identification procedure is applied is shown in

Fig. 2. It consists of 3 masses connected by linear springs of stiffness defined by
dm (28)

ki = k(1.0 - -7)3(8

where dmi is defined as a damage parameter at i-th spring. If dmi is interpreted to represent
the same physical meaning as cr does in the cracked beam model, the system's damage condition
may be introduced by specifying a certain value to 'damage parhneters'. For instance, according
to Eq. (28), a damaged condition can be constructed in which stiffness drops 25% and 50% at
the spring 2 and 3. This is accomplished by assigning the values din2 and dM 3 to be 0.2743
and 0.6189, respectively. In a sense, the spring-mass model can be viewed as a simple simulation
analogy of the cracked beam, ie., both extent and location of damage can be represented in the
model. The fundamental frequencies w, of axial vibrations are related to the mode shapes i, =
(ul,u 2,u 3)T ,i = 1,2,3 through the equations:

,TE - T[c]i, = 0 ; i = 1,2,3 (29)
M2where 6 = k Therefore, the present damage identification problem can be stated as

3 3
mmn - i)2) + - ii) 2] (30)

'ii =
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gibject to:
iT[K].aIi- iTii = 0 ;i = 1,2,3 (31)

fiTij -bij = 0 ; ij = 1, 2,3 (32.)

0 < dmi _< 1.0 (33)

Numerical Analysis

The niumerical optimization technique set forth in this study for vibrating cracked beam iden-
tification problems is accomplished using the VMCON optimization package program (this imple-
ments a sequential quadratic programming method). The VMCON program uses Powell's algorithm
which is an iterative scheme designed to converge to a point that satisfies the necessary conditions.
Additional information regarding to VMCON is available in Ref. [12].

Cracked beam model
The cracked beam model to which the identification procedure is applied is shown in Fig. 1. It

is a simply supported beam of length I equal to 18.11 of it's thickness 2d, with uniform rectangular
cross-section area A, and a pair of symmetric cracks of cr = 0.5 located at mid-span (xc = 0.6).

Unless otherwise stated, the damage properties (cr and xc) of the simply supported cracked
beams are identified by direct solution of the optimaiization problems described in the previous
section. The sensitivity to chosen values for the initial crack position xc are discussed later in this
section.

9 Examples with position of the crack (damage) specified
Consider the first example for crack identification, the simply supported cracked beam, for

which the crack position xc is known. In other words, only the crack ratio cr is to be identified; there-
fore, the variables in this problem are cr, t s, and mode shapes wa,(X) (x1 = {cr, ,,wa(xim)},x 2 =
{cr,,,a,,}). This simplified example problem with the crack position specified (xc = 0.5) is
presented to demonstrate the concept of the crack identification procedure described in the last
s.:ction.

In this example, it is assumed that the dynamic measurements are collected at 9 test positions
(T = 9) equally sr aced over the span. The first and last test stations are located at the left and
right supported end, respectively. Hence, the length of each test span Axg,m = 1,...,T - 1 is
determ'ned to Fe 3-7-d In structural dynamic testing, ordinarily only a relatively small subset
of the theoretically available eigenvalues and eigenvectors can be measured accurately, ie., realistic
information on higher modes is difficult to obtain from the measurements at a limited set of test
stations. Only information from the first three modes is to be used as test data in the present
identification process. Furthermore, according to the observations in Shen and Pierre [10], the even
modes of a simply supported beam are not sensitive to a mid-span crack; therefore, in effect only
first and third mode (a = 1, 3) information is used to represent crack damage.

Once again, the crack identification problem presented by Eqs. 21-25 is solved here with a
specified value xc = 0.5. For given initial values of x, this optimization problem is solved to
minimize the criterion F. The results of the cases with various initial conditions are shown in
Table 1. In order to clearly compare the results, only the first three variables, fi, 3, cr, of variable
vector x, are listed in the Table 1.

In Table 1, the top row denotes the assumed crack ratio and corresponding first and third
eigenfrequencies. The symbol * denotes the expected optimal solution through the identification
process. The first two column entries, fi, 3, indicate the fundamental and the third frequencies
corresponding to the initial crack ratio cr which is given in the next column. The last three columns

,give the final values corresponding to previous entry values. These final values are obtained at the
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Fstage where computation is terminated when the further optimal search obtains improvements for]
criterion F less than the specified tolerance (10E - 5 was adopted in the present study). Recall
that for an uncracked beam cr is identically zero. Therefore, in this example, it is decided to start
with the case of the initial value cr = 0.0 and for each case thereafter the cr value is increased by
0.1.

From the results presented in the first case of Table 1, one sees that the parameters fi, 3, and
cr ere identified to be 0.84684, 70.1348, and 0.50033 from 1.0, 81.0, and 0.0, respectively. The
mean square critera F was cut down from 118.13502 to 0.42440E-5. The maximum error is less
than 0.5% of the test data for these parameters. The results are also quite impressive for mode
shapes. In order to observe the global variance clearly, the initial, final, and testing mode shapes
are plotted in Fig. 3. Three curves appear on each plot: the initial mode shape, the finial mode
shape, and the mode shape from test response. The final mode shape on these plots agrees well
with the test mode shape. This is expected and verified the accuracy observed from the results in
Table 1. It can be clearly seen that accuracy of the mode shapes will worsen if higher mode results
are to be predicted. Improvement can be obtained by an appropriate adjustment of the location of
these test stations. However, a sensitivity analysis of the test stations with respect to the accuracy
of the dynamic measurements is required. This is not considered further in the present study.

In Table 1, rows 5 to 11 present the results for cases with initial cr = 0.1 to 0.8. The corre-
sponding final point values listed in the columns 4-6 show that these cases exhibit, as expected,
similar solution characteristics and accuracy. This provides a physical understanding of the geome-
try of the solution set: for the inverse cracked beam problem with specified crack position, the mean
square criterion of Eq. (21) is a convex function and it is bounded by the constraints of Eqs. (22-
25). Hence, one may conclude that the convergence of the present optimization problem is obtained
independent of the initial data chosen. In other words, as long as the initial data is selected within
the problem's feasible domain, an accurate and unique solution through the identification process
is expected.

Clearly the prediction of mode 3 shape shown in Fig. 3 fails to reproduce the expected sin
curve. This is because the 3rd mode shape was plotted based on the deflections of the mode shape
measured at only 9 test stations. While this reflects a limitation on how well mode shapes are
portrayed, the quality of the final result for the identification problem is unaffected.

* Simultaneous identification of crack position and depth
The second numerical example deals with the crack identification of a simply supported cracked

beam with unknown crack ratio and with crack position unknown. In this treatment, the variables
in the optimization problem are cr,xc, 's, and mode shapes wvQ(x) (' 1 = {cr,xc,&t, WU(Xtm)).
Due to the limitations of the VMCON program, the examples that concerning with the testing
mode shapes wt provided in the form of continuous functions are not shown in this subsection.

The formulation of the crack identification problem (Eqs. 21-25) is tested again with both
crack position and depth are assumed unknown. In the first few cases, the simulated dynamic test
measurements are assumed to be collected at 9 equally spaced test stations (T = 9). The first
and last test positions are located at the left and right supported end, respectively. This example
will be solved a second time using an increased number of test stations, to provide information on
sensitivity of the procedure to the amount of test data.

In Table 2, the top row denotes the assumed crack ratio, crack position, and corresponding
first and third eigenfrequencies. The symbol * denotes the expected optimal solution through the
identification process. The first column entry T denotes the number of test stations used to collect
dynamic measurements. The second and third column entries, fi, 3, indicate the fundamental and
the third frequencies corresponding to the initial crack ratio cr and crack position xc, which are

Lgiven in the next two columns. The last four columns provide the final values corresponding to
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the previous entry values. These final values are obtained at the stage where the computationis]
terminated, when the optimal search obtains step-wi~e improvements of F less than a-specified
tolerance (10E - 5 in the present study).

Table 2 shows that cases with T=9 have the final values of close to ', but almost all of
these cases have unacceptable final estimates of xc and cr. For instance, if the initial position
is selected as xc = 0.4 and cr = 0.4, the values of xc and cr at the final iteration are 0.99789
and 0.36289 which are approximately 98% and 28% different than the given test data. In other
words, evidently the configuration with xc = 0.99789 and cr = 0.36289 is able to provide another
minimum value of the criterion (besides the one associated with the expected result). This cracked
beam configuration is shown in the solid curve of Fig. 4 . The mis-match between final and test
mode shapes can be clearly seen. This observation confirmed the unacceptable error previously
obtained in the comparison of xc and cr between the final and test data. Except for the case with
initial cr = 0.4 and xc = 0.48 which provides less than 1% estimation error, the rest of the cases
in Table 2 with 9 test stations are also found to have similarly large estimation error. Therefore a
dependable solution in crack identification is almost impossible to achieve on the basis of the 9 test
stations simulated measurement information on first and third niode response. This confirmed the
observations in Shen and Pierre [10, 11], ie., for a cracked beam with an unknown crack position,
a unique solution is not to be expected.

However, by comparing the third mode shape in Figs. 3(b) and 4(b) to the mode shape in
Fig. 11(c) of Ref. [10], it can be seen that an accurate third mode shape can not be approximated
based on the displacements collected from 9 test stations only. This implies that the accuracy of
the above computational identification might be improved if the third mode is approximated well.
Therefore, the cases with more test stations should be examined since they would clearly provide
better mode shape approximation. The largest number of test stations which can be accommodated
in the identification procedure is 45, due to the limitations of the optimization program package.
Once again, the test measurement points are equally spaced, and first and last stations are set
located at the left and right supported end, respectively. The \'MCON problem formulation is
identical to the case of T=9; however, the variable vector x is expanded from 22 components to 94.

Rows 12 to 17 of Table 2 summarizes the results through the minimization process. As in the
previous cases, the final values of frequency are observed to be close to test values *. Acceptable
final solution values for xc and cr are shown in the results of the cases in which initial xc and cr are
selected within the range from xc = 0.4,cr = 0.4 to xc = 0.6,cr = 0.6. On the other hand, within
this range, good agreement is also shown in mode shapes. Figures. 5 and 6 display the initial,
final, and test mode shapes for cases with the initial xc = 0.4,cr = 0.4 and xc = 0.6, cr = 0.6.
Excellent agreement is observed between the final and test mode shapes. Moreover, by comparing
the final data curve in Figs. 5 and 6 with the mode shape in Fig. 11(c) of Ref. [10], a more accurate
third mode is approximated. This indicates that more accurate information on mode shapes is
required to obtain a satisfactory solution from the identification process in the case where both
crack position and crack depth are unknown.

Questions arise concerning the conditions under which the identification procedure can pro-
vided an unique solution. As discussed in Shen and Pierre [10, 11] and concluded in the studies
of Gladwell et. al. [8], if all the mode information is used in the identification procedure, then
the system's properties can be identified uniquely. However, for practical reasons, in structural
dynamic testing only a small subset of the eigenvalues and eigenvectors can be represented in the
measurement data. Furthermore, even if substantially more modal information would be avail-
able, the minimization search may be prohibitive for such a large-dimensional feasible domain that
would result. These comments are intended to point out certain limitations inherent in the identifi-
cation procedures. These considerations is addressed with the presentation in the following, whichL j
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dgscribes sufficient conditions for the unique identification from the dynamic measurements of a 1
multi DOF vibrating spring-mass system.

Spring-mass model
The following examples of damage identification problems were constructed by introducing the

damage through the drop in the stiffness or, more conveniently, the value of each damage parameter
to change the system's dynamics behaviour. These dynamic changes, taken as the test simulation
of response data, are used to deduce the value of each damage parameter via the identification
process.

The numerical optimization technique set forth in this study for vibrating cracked beam iden-
tification problems is accomplished using the VMCON optimization package program (this imple-
ments a sequential quadratic programming method). The damage properties (drin, i = 1,2,3) of
the fixed-free spring-mass system are -identified by direct solution of the optimalization problems
described in the previous section.

The first example corresponds to the identification of a system's damage, dm = 0.0, dn 2 =
0.5,dM3 = 0.25, using first and second mode information. The first five variables, fi, 2, din,
din2, and din3 of each vector x are listed in Table 3. The top row denotes the assumed damage
parameters and corresponding first and second eigenfrequencies and the symbol * denotes the
expected optimal solution through the identification process. The first and second column entries,
6,6, indicate the fundamental and the second frequencies corresponding to the initial damage
parameters, dm 1, dm 2 ,dm 3 , which are given in the next three columns. The last five columns give
the final values corresponding to previous entry values. These final values are obtained at the stage
of the program is terminated when the further optimal search obtain improvements F less than a
tolerance (10E - 5 was adopted in the present study).

In Table 3, each case has the final values of close to ', but almost all of them have the
unacceptable final results for xc and cr. Only the case with initial dn 2 = 0.48 and dn 3 =
0.24 has less than a 1% estimation error. These results show performance of the present damage
identification process is generally unacceptable if only first and second modes are used.

The first six variables, i, 6, 6, din, dm 2, and din3 of each vector x are listed in Table 4 the
top row denotes the assumed damage parameters and corresponding first and second eigenfrequen-
cies and the symbol * denotes the expected optimal solution through the identification process. In
this example, all the modes are used to deduce the damage conditions. Satisfactory predictions are
obtained in each case, in contrast to the results examined in Table 3. Even though starting point
is located at boundary of the feasible set (dm = 0.0, din2 = 0.0, din3 = 0.0), the agreement is still
precise. These results confirm the expectation that a unique and accurate solution predictions are
assured if all the modal information is included as data in the damage identification process.

Conclusions

A general method for damage identification of a simple beam and a spring-mass system is
presented. The method may be useful as a component of an on-line nonintrusive damage detection
technique for vibrating structures. A formulation is expressed as a direct minimization problem
statement with a criteria of the mean square difference of natural frequencies and mode shapes
between test measurements and corresponding model values. The damage identification problem
is reduced to finding the damage parameters that will satisfy appropriate constraints and minimize
the mean square difference.

The uniqueness and reliability of the identification process is confirmed by solving several
damage identification examples with specified damage positions. Without knowing the damaged
Iocation, a restricted region in initial data space had been found for which there will be a realistic
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Fand'convergent solution -from the identification process. This region is small, and can be expanded]

if substantially more modal information would beavalhble. However, tliqmini Iization search may
be prohibitive for such a large:dimensional feasible domain that would result.
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Test Data: c[=0.84703. c;=70.1348. cr=0.5
Initial Data , Final Data

, 6 1 jCr I "1 113 t Cr

i. l 81.0 I 0.0 1 0.84684 1 70.1348 1 0.50033 1
09 80.0769 0.1 0.84697 1 70.1346 1 0.500191
0.97217 I 78.8135 I 0.2 1 0.84704 1 70.1347 1 0.49998 I
0.94815 i 77.0062 i 0.3 1 0.84701 1 70.1348 I 0.50007
0.91032 174.3024 1 0.4 1 0.84694 1 70.1347 1 0.50024 1
0.73638 I 63.7848 i 0.6 1 0.84705 70.1348 1 0.49962 1
0.54574 55.0511 1 0.7 I 0.84703 1 70.1348 1 0.50034
0.27233 45.9316 [0.8 1 0.84700 170.1347 1 0.50009 1

Table 1: Numerical results based on mean square problem statement of Eqs. (21.25) with the crack
(damage) specified (xc = 0.5).

Test Data: ,=0.84703, ;=70.1348, cr'=0.5. -c'=0.5

Initial Data I Final Data
Te !I I -.-- C cr I z

0.91806 1 78.5161 T 0.4 . 0.69639170.135910.997891 0.362891
9 ' 0.91371 1 76.6365 0.4 0.4 3 0.70007 i 70.1362 i 0.99440 0.39620 1
91 0.91158 I 7 r5335 1 0.4 i 0.46 i 0.84610 1 70.1347 I 0.91029 1 0.53775 I
9 '0.91056 I 74.7464 0.4 0.47 0.84711 1 70.1347 1 -

9 11 0.91063 1 74.157 0.4 0.480.84704 70.1348 1 0.50554 0

9 il0.73472 1.8062 . 0.51 0.84704 t 70.1348 1 0.60027 0.50526 1
91 0.7311 1 64.2643 1 0.6 0.52 0.84704 170.1348 1 0.60083 1 0.50531
9 10.73617 164.7619 10.6 10.53 1 0.84704 1 70.13481 0.60141 1 0.50534 1
9 i 0.73929 I 65.6727 1 0.6 10.54 1 0.84705 1 70.1348 i 0.60255 ' 0.49459 1
9 I1 0.73909 1 66.6112 0.6 I 0.55 0.84702 1 70.1348 I 0.99721 1 0.24709 1
9 i 0.75452 1 74.0109 0.6 1 0.6 0.70040 1 70.1363 i 0.99079 1 0.59307 j
45 11 0.97475 1 80.193 0.2 1 0.4 10.90130 170.13471 0.94855 1 0-944041
45 1 0.91806 1 78.5161 0.4 1 0.4 10.84420 170.1345 10.53053 1 0.51586 1
45 I 0.91531 I 77.2676 I 0.4 I 0.42 0.84686 I 70.1347 I 0.50838 1 0.50198 1
45 1 0.96219 'M5819 0.25 1 0.45 0.84643 1 70.1348 1 0.51729 1 0.49389
45 i 0.75452 1 74.0109 0.6 1 0.6i 0.84645 1 70.1348 10.51723 0.50609
45 i 0.64083 I 77.7173 0.7;, 0.7 1 0.89079 1 70.1347 1 0.5895 1 0.18171

Table 2: Numerical results based on mean square problem statement of Eqs. (21.25). The position
of the damage ZC is a variable.

Test Data: c*=0.15296. ';=1.2956, ,;=2.2494. dm;=0.0. dm.=0.5, dm=0.25

Initial Data Final Data
6l J am, ami din3 iI f i T--r dI dt I di1 " dm3

0.1980611.5549 0.0 0 1 0.0 1 0.1529911.2956 0.21.3921 000770.10985i

0.18986 1 1.4975 0.0 1 0.1 0.05 1 0.15294 I 1.2955 1 0.1732 1 0.41741 1 0.13265
0.18123 1 1.4429,0.0 0.2 0.1 0.152 6 1.2956 i 0.13478 1 0.43493 1 0.15777
0.17218 j 1.3911 1 0.0 1 0.3 I 0.15 0.15297 1 1.2956 1 0.092221 0.45445 1 0.18530
0.16275 1.1.3420 1 0.410.2 0.15293 1.2955 i 0.04751 I 0.4735 1 0.21576 1
0.15846 1 :4 i 0 0.24 i0.15294 1.295610.02043 i 0480-9 10.23502
0.15494 i 1.3047 1 0.0 0.48 i 0.24 1 0.15295 1 1.2956 i 0.00973 1 0.49511 0.2428 11

Table 3: Numerical results for spring.mass model using first and second mode information.
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I Test Data: "*=0.15296. -,i.2956. !1= .2494. am=00 am.=O.S. am4.2

I - Initsai Data I Final Data ____

1[6I~ I amt dint iam,I i 1 i6 dolt 41 71 a
0.19806 1 1.5549 13.2469 10.0 i0.0 0.0 i0.15294 .2 M 2.2494 0.002 1 0.00U0..48
0.18986 1 .4975 13.0209 10.0 040.05 0.1524 1 .295 12.2494 10.002 10.5001 "0.2498 1
0.18123 1 14429 12.8086 10.0 10.2C3T0.!.5242 1 1=55 1 =494 10.006 1 0.5026 10.2442 4
0.17218 i1.3911! 2.6095 10.0 10.3 0.15 1 0.15265 11.295M i 2.2494 1 0.0039 1 0.5015 1 0.2494
0,16275 1 1.3420 1 2.4232 1 0.0 ! 0.4 1 0.2 ,0.15280 1 1.2955 . 2.2494 1 0.0019 1 0.5008 1 0.2484A

0.15848 I 1.3088 ( 2329 1 0.0 1 0.44 1 0.24 1 0.15295 1 1.2956 1 2.2494 1 0.0000 1 0.5002 ! 0.2499

0.15494 1 1.3046 i 2.2332 10.0 10.48 17024 10.15292 11.11956 1 2.2494 1 0.0004 1 U.5002 10.2496

Table 4: Numerical results for spring-msan model usung all three mode infortion.
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Electrical Impedance Imaging in Two-Phase, Gas-Liquid
Flows: 1. Initial Investigation

J.T. LinI, L. Ovacik2 , O.C. Jones3

Center for Multiphase Research, Rensselaer.Polytechnic Institute
Troy, New York 12180-3590 U.S.A.

ABSTRACT
The determination of interfacial area density in two-phase, gas-liquid flows is one of the major ele-

ments impeding significant development of predictive tools based on the two-fluid model. Currently,
these models require coupling of liquid and vapor at interfaces using constitutive equations which do not
exist in any but the most rudimentary form. Work described herein represents the first step towards the
development of electrical impedance computed tomography (EICT) for nonintrusive determination of in-
terfacial structure and evolution in such flows.

INTRODUCTION
Description of interfacial structure and evolution, as well as the gradients which control transfer of

mass, momentum, and energy at these phase boundaries is the single most important key element and the
challenge for the future of two-phase flow analysis. Indeed, measurement and prediction of phase bound-
ary structure and gradients at these boundaries is one of the major factors impeding development of true
predictive capability for systems involving flows of liquid arid vapor or gas mixtures.

There are no methods available today which allow determination of interfacial structure and evolution
in any but the most simplistic cases. It is the purpose of this paper to describe a concept which appears to
hold promise for determining the distribution and evolution of interfacial area density in two-phase, gas-
liquid flows.

BACKGROUND
The concept of impedance imaging includes a body of unknown internal electrical field properties of

conductivity and permittivity surrounded by electrodes on the bounding surface. These electrodes are ex-
cited electrically either in pairs or groups, and the response on the entire set of electrodes is determined.
The excitation can be either applied current (AC) or applied voltage (AV), and the measured response can
be similar. This is undertaken for all linearly independent combinations of excitation and response to pro-
vide numerous sets of data which can then be used to form an image. Maxwell's equations for the behavior
of the electrical field are utilized to determine the internal distribution of electrical properties which mini-
mizes (in the least squares sense) the difference between the computed boundary response (given the exci-
tation) and the measured response. If there are N-electrodes, and all possible independent combinations
of excitation and response are utilized, there are N(N-J)/2 independent measuremehts which allows the
field to be broken into the same number of regions within which the conductivity and/or permittivity can
be determined. The challenge is to develop an accurate and rapid tomography system coupled with accu-
rate inverse computational methods which will allow clear images to be determined.

1. Post-Doctoral Research Associate
2. Graduate student
3. Professor of Nuclear Engineering and Engin(
and Director--Center for Multiphase Research
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Research in the development of electrical impedance computed tomography (EICT) has been under-
taken in the geological area [c.f. Dynes and Lytle'] and in the biomedical field [c.f. Seagar. Barber. and
Brown2]. Most methods have used the resistive field because the resistivities of relevant materials are low.
To date, the best of applications applied to real systems produce a very fuzz) planar "picture" of resistivity
or permittivity variations but the results are encouraging.

Most EICT methods can be classified by the number of poles used to make a single measurement, and
the method of excitation. Two-pole methods use on], two electrodes for both excitation and measurement
whereas four-pole methods separate excitation electrodes from those used for measurement, the measure-
ment generally being a potential difference. Some feel that the four-pole method eliminates errors due to
contact resistance at excitation electrodes, but this is not clearly a benefit [Newell et al. 3,4].

Price 5, although unsuccessful, appears to have been the first in the biomedical field to attempt obtain-
ing impedance tomographs using the three-pole method but his reported work failed. His suggestion of
the use of "guarding" methods was followed by others, all of whom were unsuccessful [Bates et al. 6,
Schneider7, Seagar et al. 2]. Furthermore, in the three-pole method, small voltage differences are obtained
by subtracting the measured voltages .,ading to substantial errors [Smith8].

Contact impedance was minimized by Barber et al.9, using a two-pole method and high-impedance
measurement methods, but results were quite blurred. Two-pole methods were also used with little suc-
cess by Dynes and Lytle I and by Starzyk and DaI'.

Seagar et al. I contend that the blurring of two-dimensional results in a continuously variable conser-
vative field is due to nonzero effective wave number (infinite wave length) of the applied signal. They
show, however, that successful reconstructions can be made for certain classes of piecewise constant me-
dia (similar to two-phase systems). and that the process is relatively simple when the discrete zones are
circular in shape.

There can be orders of magnitude differences between the sensitivity of a given boundary measure-
ment to a fixed size body depending on its location. Similar orders difference can thus occur in the eigenva-
lues of the solution matnx thereby making the inversion problem severely ill-posed and difficult to solve
[Tarassenko and Rolph 12, Murai and Kagawa13.14]. In spite of ill conditioning, good results were obtained
by Wexler' 5 using a four-pole potential method with real domain reconstructions even where there were
widely varying conductivities in an overall conducting medium--i.e., metal and plastic shapes in a
conducting water field.

Isaacson and coworkers [Isaacson' 6, Gisser, Isaacson, and Newell17, Isaacson and Cheney' 8] de-
scribed a method to estimate the conditions necessary to distinguish a homogeneous cylindrical body of
one size, centered in a cylinder of a larger size with the region between the two also of homogeneous elec-
trical field structure. This was followed by Fuks et al. 34 who also provided methods of estimating the de-
gree of accuracy to be obtained with digital conversion of data. In general, they found that increasing the
number of electrodes can improve the image only up to a point after which better imaging comes only by
improving accuracy of measurement.

Barber and Brown19 20 developed an iterative back-projection method based on linearization around
a constant conductivity. This method was subsequently improved upon by Santosa and Vogelius 2" but with
mixed results. Beck and his co-workers [Huang, et al. 22, Beck and Williams 23] have also developed back-
plane projection methods for analysis of gas-liquid pipe flows of gas and oil. A variational method devel-
oped by Kohn and Vogehus 24 is similar to that of Wexler et al. 15 but guaranteed to converge. It % as show n
by Kohn and McKenne, 25 however, to produce results no better than those of Wexler . Murai and Kaga-
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wa13 used a"matrix regularization" method based on Akaike's information criterion and eliminated alto-
gether the problem of ill-conditioning. I

Yorkey, Webster, and Tompkins (YWT) followed a different approach using Marquardt's condition-
ing method which they stated to be better than Akaike's method. Their results appear singularly successful
in inversion of two carefully-chosen numerical experiments [Yorkey26, Yorkey and Webster27. Yorkey,
Webster. and Tompkins, 28-3 1). Finite element methods were used to obtain accurate reconstructions in four
iterations. No reconstruction of real situations has yet been reported and Kohn and McKenney 25 indicate
the YWT tests were "biased by the nature of the synthetic data."

Very slow transient results were obtained by Brown, Barber, and Seagar 32 when a dish of heated saline
solution was reconstructed showing the thermal patterns of convection. From comparison of their results
with Price's estimates of resistivity [Price 5] it seems that changes of the order of 1.5-10 f2-cm were easily
resolved. These results also indicate that there is a good potential for application of EICT methods to natu-
ral convection studies.

Finite element methods seem to have been singularly useful in reconstruction tomography of electrical
fields. Starting with the suggestions of Kim, Tompkins, and Webster33, this work has been the basis for
the most successful inversions reported on to date [Dynes and Lytle' , Murai and Kagawa 13. and
Yorkey 26-31].

Yorkey et al.31 examined several other methods including the perturbation method used by Kim et
al.33 , the equipotential lines method used by Barber et al.9 and by Barber and Brown20 , the iterative equipo-
tential lines method (the original one proposed did not iterate), and the method used by Wexler et al., and
similarly by Kohn and Vogelius24 (referenced. by YWT). Of the five methods tried, only the YWT method
converged to zero error in overall resistivity, and seemed to obtain the correct result locally, in spite of the
fact that they only utilized adjacent electrodes for excitation--a pattern guaranteed to produce the most
difficult problems with sensitivity. Other methods either did not converge or converged with some error.

On a completely separate track, Newell, Gisser, and Isaacson and their coworkers at Rensselaer have
been developing the multi-pole current distribution (MPCD) method. This method has resulted from
mathematical analysis showing the "best" application of electrical current in a radially-symmetric system
to be sin(kO) and cos(kO), k= 1 ...K where K is half the number of circumferential electrodes [Gisser et al.' 7,
Newell et al.3'4.Fuks et al. 34, Isaacson and Cheney18, Cheng et al. 35]. This distribution is optimum in effect
because at any instant all electrodes are simultaneously excited and the total input current is the sum of
individual electrode-pair currents thereby increasing the sensitivity and decreasing the effects of noise in
the system. Results on two-dimensional electrode arrays without iteratior Newton One Step Error Re-
construction, NOSER, method36) are quite fuzzy but are the equal of others described in the literature.

ANALYSIS

Reconstruction Method
The iterative method showing most rapid convergence (Yorkey's resistive network or YWT method)

was extended to complex reactive networks. The computational logical includes two parts. The first part
is the forward problem which is used to generate a voltage distribution using a given distribution of com-
plex conductivity. The second part is the inverse problem which uses the calculated boundary voltages in
comparison with the measured values to reconstruct the conductivity/permittivity distribution.The theo-
retical basis for the algorithm is given as follows. The steady-state governing equation for the voltage dis-
tribution within the inhomogeneous and isotropic field is given by the equation
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V .(uvv)=o. (1)

where V is the voltage field and a = (c +jcos), c being the conductivity, E the permittivity. and co the frequen-
cy. Finite element methods (FEM) are utilized where they are nodalized by quadrilateral elements then
transformed to squares for computational purposes. It is known that this method converges to the exact
solution where the element size becomes infinitesimal.

The FEM is defined for a reactive network as YV = C, such that the voltage field is given as
V ,P = Y',CXP. (2)

where Y is the N x N indefinite admittance-matrix. The matrix-size parameters are defined as

N = the number of nodes
P = the number of current excitations
M = the number of elements
E = the number of external measurement electrodes

While V represents the voltages of the nodes both inside and on the periphery of the body, a transfor-
mation is made to extract the calculated boundary voltages from the calculated voltage matrix VNxp to
form a new vector fEPxi. The measured voltages on the E-electrodes with P-current excitations are col-
lected to form the vector Vo, Epxi.

There are differences between the calculated voltages fEplx and measured voltages Vo.EPxl on the elec-
trodes. A scalar error function is defined as

It [f- V0 t[r- Vo]. (3)
2

In order to get minimum error, the differential of 4 relative to c should vanish. Thus,
-_ = [f ][r_ Vo] = ( (4)

do

where f' = d/do . The quantity ' can be expressed as a Taylor expansion

0- ¢'(UK) 4." (U)V'a ') = 0. (5)

Thus, since ep' vanishes, the gradient of the conductivity is given by

VyK - _ , (.K)]-l,(a) (6)

where
, =, [f (aK)] Tff(aK) - Vo] (7)

and where
0" (o .) -=[f(CrE)lr'(Oh.). (8)

The corrections to oa can be obtained after every iteration, until the convergence criteria is met.

A areasonable level of spatial resolution will need many current excitations and so the matrices re-
quired in the inversions can be very large. Since the forward computation of the field potential for a given
complex resistivity pattern involves inversion of a sparse matrix, Gaussian elimination methods used are
computationally expensive. Thus, the Jacobi conjugate gradient (JCG) method (simlar to that described
by Carey and Odenas) has been utilized for real domain inversions. Time savings was achieved by main-
taining a constant Jacobian for several iterations.

In the case of a matrix having eigenvalues separated by orders of magnitude, preconditioning is ob-
tained by pre-multiplying with the inverse of the diagonal or tridiagonal of the original matrix. The JCG
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,method is both extremely fast and absolutely convergent for positive definite matrices such as are antici-
pated in this problem. Since it is not necessary to calculate and store zeros in the matrix, the computational
CPU time is decreased substantially.

The accuracy for both methods are similar. Hestenes and Stiefe 46 have shown that if the conjugate
directions are chosen as the unit basis vectors, then the conjugate gradient will be equivalent to Gaussian
Elimination method. Round-off error can also be corrected in the JCG algorithm.

Quadrilateral Mesh Scheme
All computations were undertaken in a dimensionless array of square elements. To easily model geom-

etries having curved surfaces, a transformation from quadrilateral to square elements was included both
for preprocessing and postprocessing of computed results.

The sketch in Fig. I shows the quadrilateral transformation scheme. Transformation was accom-
plished in the standard fashion. A shape function Ni = Ni(4,il) is chosen with the values ofg and il defined
in the figure such that the mapping from the parent domain R into the square-element domain. An infinite-
ly small area is transformed using the Jacobian with the following shape functions

N, (1 /4)(1 - )(1 - n/)

N2 = (1/4)(1 + )(l - )
N3 - (I/4)(l + )(l +7) (9)
N4 = (1/4)(1 - )(l +7)

A bilinear expansion form is utilized such that

x( ,??) = ao + al, + a2  + a,(1
y(.,17)= o +M3  +/2V +/3 3o

where the a's and O's are determined by the transformation Jacobian

J = / +/ 3 l a 2 + a 3 " 0II)

Now the problem to be solved is Eq. (1). It is assumed that the conductivity is piecewise continuous
being constant in each element such that Laplace's equation is solved element-by-element. Thus

4 4
V = I VNi and VV = I Vi VNi. (12)

inI i,,I

Solving Eq. (1) is equivalent to minimizing the functional

F=- IVV2dS (13)

where R designates the region occupied by the individual elements for which Eq. (13) applies. Thus,
aF- =0 for i=1,4 (14)aV!

which, after minimizing, results identically in Eq. (2). The admittance elements are given by the transfor-
mation,

Yi=o'R J Fi, (, 1 )d~d (15)
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and where
j-1.N_ +j,2 ) ,aj N]'+ ONi + J Ni Iaj+

V) = , ) b (16)
12~ 1'i (an 22Ai(i an2 2 2212a

RESULTS

Numerical
Square-element conductive arrays. Duplication of Yorkey's results required implementation of the

method using square elements in the resistive mode only. Results obrtained were identical to those found
by Yorkey et al. Convergence is very rapid with the error function [Eq. (3)] for an 8 x 8 array converging
to two significant figures within 4-5 iterations and within I part in 104 within 12 iterations where the con-
trast ratio is as large as 10,000:1. Aitken's method is also used to improve convergence speed more than
a factor of 3.

Quadrilateral-element arrays. Both real and complex conductivity calculations have been under-
taken; however, thereal patterns converge much more readily than the complex. Varying Marquardt's con-
stant and not recalculating the Jacobian matrix every iteration leads to nonuniform convergence.

Figure 2 shows two patterns with the number of iterations required for convergence with the fill pattern
key between the two reconstructions. The original pattern is chosen to be uniform of high conductivity.
Gauss elimination was used to perform matrix inversions. The ring pattern converges much more rapidly
than the annular pattern because the zones requiring the greatest changes are nearer the boundary. Further-
more, the central region required no change whereas for the annular geometry, the central zones required
maximum change.

Figure 3 shows the convergence sequence for a 64-element body with real-conductivity elements of
3:1 contrast ratio distributed in a relatively arbitrary pattern. The quantitative resistivity pattern definition
is identical to that shown at the center of Fig. 2. It is seen that there is a relatively rapid convergence for
elements near the boundary even though the change is from one extreme to the other. On the other hand,
changes in the central region require significantly more computations for convergence due to the extreme
lack of sensitivity of regions farthest from the boundaries. Global error for the three cases (arbitrary, ring,
and annular) is shown in Fig. 4, confirming that the more complex the pattern, the larger the number of
iterations required for convergence.

The question of noise and error generally pose real difficulties in the convergence of an inverse prob-
lem to its solution. In the case of the annular geometry, Gaussian noise was added to the "measured" volt-
ages and the problems recomputed. As shown in Fig. 5, the global error generally decreases until the
effects of the error become important and then become relatively constant. Figure 6 shows the variation
in the local error for each of the four ring layers in the geometry showing increasing error with distance
from the boundary. In the case of 1% Gaussian noise, the local error in the inner elements is above 30%.
Even in this case, however, the noise has little effect on the visual recognition of the pattern (Fig 7).

Computation for these 8x8 reconstructions required, approximately 3 minutes on the IBM 3090 com-
puter. Of interest was the computational time required for a significantly larger problem. in addition to the
interest in gaining better computational resolution. For this purpose, a 256-element pattern (1 6x 16) was
computed in two steps: starting with a uniform background pattern using an 8x8 mesh; switching to a
16x 16 pattern when convergence ceased due to the effective noise in the system caused by nonalignment
of pattern and mesh. Starting with an 8x8 pattern, and using a conjugate gradient method for matrix inver-
sion, convergence is rapid at first, then slows as the effective noise becomes dominant. Switching to a grid
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size of 6 x 16 results again in rapid convergence. Computation time in this-case for a total of 30 iterations
was 43 minutes on the IBM 3090 and convergence was not achieved, even though the global error was
reduced to 0.00086. A 24 x 24-element problem required 54 minutes for a single iteration.

EXPERIMENTAL
An example of a electrical impedance tomographic image obtained using sinusoidal current excitation

patterns at 15 kHz, and complex conductivity inversion is shown in Fig. 8 (NOSER method, Newell et
al. 36). The test geometry used is a rather shallow, two-dimensional bath 500-mm in diameter. Water filled
the dish to a depth of approximately 12 mm except for an empty, 50-mm- diameter beaker placed in the
center of the dish.

The NOSER method is a noniterative reconstruction which uses exact solution of the uniform field
problem and exact computation of the first Taylor-series corrections in the iterative process. The results
shown in Fig. 8 indicate the darker regions where higher impedances associated with air are calculated.
In this case, the contrast associated with the central region is only approximate as, for air at 15 kHz excita-
tion the impedance is virtually infinite in comparison with tap water where the resistivity is in the range
of hundreds of ohm-cm. The results show that it is clearly possible to separately identify large separate
regions of gas-phase surrounded by water in a large geometry, even without iteration.

CONCLUSIONS
A potentially useful method for electrical impedance imaging of two-phase fluid distributions meth-

ods has been discussed. The method solves the inverse problem where the internal conductivity field is
piecewise approximated using iterative procedures which require computed boundary measurements con-
verge to measured values which exist due to given boundary excitation. Convergence is undertaken in a
manner which minimizes the least squares error between the computations and the measurements. Specif-
ic results of this work are:

1. The internal distribution of complex electrical impedance can be piecewise approximated within a
body by using only boundary excitation and measurement.

2. Square-element FEM modeling of aresistive body allows iterative convergence to 1% within 4-5 iter-
ations and within 0.01% within 12 iterations for all contrast ratios up to 105.

3. Quadrilateral-element, FEM modeling was slower to iterate and more sensitive to contrast ratio, per-
haps due to the presence of highly acute or obtuse angles distorting the equivalent square-element
conductivity. Local error in a given element was shown to be considerably slower to converge to a
reasonable error. Elements farthest from the boundary showed slowest convergence, and more com-
plex situations appear to require more iterations for convergence.

4. Complex contrast ratios as large as 102 were found to converge using Gauss elimination for matrix
inversion. Situations with larger contrast diverged.

5. The computational methods utilized appear quite tolerant to Gaussian noise allowing inverse compu-
tations to be undertaken with as much as 1% rms noise in boundary "measurements." The global error
is found to diverge from the no-noise case and arrive at a relatively constant value dependent on the
noise. Even with relatively large local errors, visual discrimination of the patterns was easily possible.

6. Application to a practical, laboratory situation shows that even without iteration, reasonable results
can be obtained for complex conductivity fluids.
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ABSTRACT

Given the current level of jet engine performance, improvement
of the various turbomachinery components requires the use of
advanced methods in aerodynamics, heat transfer, aeromechanics
as well as in other fields.
In particular, successful blading design can only be achieved
via numerical design methods-which make it possible to reach
optimized solutions in a much shorter time than ever before.
The present paper focuses on two design methods which are
currently being used throughout the French turbomachinery
industry to obtain optimized blading geometries. Examples are
presented for compressor and turbine applications. The status
of these methods as far as improvement and extension to new
fields of applications is also reported on.
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1i. INTRODUCTION

The ever-increasing performance requirements for jet
engines, together with the fast pace of development programs,
have led designers to rely more than ever on computations when
defining their products. The field of Fluid Mechanics has
naturally been at the forefront of this evolution both in
external and internal aerodynamics. A great deal of effort has
been devoted to the development of powerful numerical tools
which allow both the design and analysis of geometries with the
obvious goal of obtaining optimized shapes that can enhance
performance.
The present paper focuses on two design methods which are
currently used throughout the French industry for turbomachinery
applications. After a brief review of the general inverse
problem in the turbomachinery field, examples of what can be
achieved are presented both for compressor and turbine blading.
In addition, the versatility of one of the methods is demon-
strated by using the example of a jet engine inlet design.

2. A PROPER FORMULATION FOR THE INVERSE PROBLEM

The idea of inverse design methods is obviously not new.
Once the blade or wing designers had the knowledge and the
understanding of the flow around an airfoil, isolated or not, it
was natural to try to define profiles not from the purely
geometrical standpoint but rather by using this very knowledge
of the fundamental profile aerodynamics. It was recognized
early on that there was a direct relationship between the
surface velocity distributions and overall performance. Hence
the idea of defining the profile starting from the velocity
distribution itself.

The inverse problem for isolated profiles in incompressible
flows was first formulated by LIGHTHILL [1]. It consists in
determining an airfoil that produces a given speed distribution
prescribed on the unknown airfoil profile. It was shown tha8
closed profiles could exist only if the prescribed velocity W
satisfies three integral constraints. In this early work, these
were chosen as the upstream velocity WO and two parameters
related to the closure of the profile.
More recently, Volpe and Melnik (2) proposed several possible
choices for the design of isolated profiles. In particular,
they showed that it was possible to obtain closed profiles via
introduction of two modification functions for the target
veloqity.For turbomachinery applications, the problem is slightly
different in the sense that 1) the flow is quasi-three dimen-
sional (in first approximation) and 2) the profiles are
entrapped between adjoining blade rows which partly determine
the upstream and downstream boundary conditions. In particular,
the upstream (or downstream) velocity as well as the
upstream/downstream flow angles cannot be set as free
parameters.
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[The prescribed velocity distribution is defined on the pressure
and suction sides of the blade and is given by two separate
functions of the arc lengths S (pressure) and S (suction). The
relative lengths of the two sides or, equivalently, the position
of the stagnation point, can therefore be considered as the
first necessary parameter.
The second parameter is a direct consequence of the fact that,
in general, a flow evolves (in basic approximation) on a
quasi-three-dimensional surface throughout a blade row. Whereas
it is possible to set free two parameters defining the trailing
edge closure ( a x and ty) for isolated 2-D profiles, it is
obvious that a trailing edge cannot be reasonably defined if
both suction and pressure side trailing edge points are not
located at the same radius (the same m-coordinate in the
standard (m-e) quasi-three-dimensional blade-to-blade
representation). Therefore, the remaining parameter pertaining
to profile closure is the circumferential gap in the 9-direction
at the trailing edge.
Finally, like in all turbomachinery problems, the solidity is a
governing parameter, directly related to the circulation around
the profile and the flow turning. It comes as no surprise that
it is the third parameter to be computed by the algorithm since
inlet/outlet angles as well as velocity distributions are given
data for the design method.
Based on these general considerations, many methods were
proposed in the past to deal with the problem of profile or
blade design. It is not the purpose of this paper to review all
these methods and we will instead refer the readers to overall
summaries such as proposed by Sloof (3] or Meauze (4].
A commonly used method for two-dimensional applications was
proposed years ago by Stanitz (5] to determine analytically a
profile from a given velocity distribution. It is still being
used successfully for specific two-dimensional applications at a
reasonably low Mach number. More recent developments by Cedar
and Stow (6] in England and Jacquotte (7] in France allow the
definition of high Mach number profiles within the quasi-three-
dimensional and potential approximations. Finally Meauze (83 in
France and Leonard et al. (9] in Belgium have proposed solutions
for the non-viscous quasi-three-dimensional problem solving the
Euler equations that allow for the occurrence of strong shocks
within the flow field.
In the following paragraphs, we will discuss the recent
developments in France that concern both the potential design
method by Jacquotte (7] and the Euler method by Meauze (8].

3. FINITE ELEMENT INVERSE METHOD FOR POTENTIAL FLOW [7]

A thorough description of the method is given in (7] and
(9]. We will therefore only give here a general outline while
concentrating on concepts and applications.
The method was developed by Jacquotte in 1989. It makes use of
the concept introduced in the previous paragraph pertaining to
the constraints that must be taken into account in order to
arrive at a solution.

LI
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3.1 Basic assumptions

Three very basic approximations are retained:

a) the flow is inviscid;
b) it is considered quasi-three-dimensional and

computed on stream surfaces in the computational
space (m,&), where m is the arc length of the
meridian line defining the stream surface, and 9 is
the polar angle around the axis Oz. It is
therefore assumed that the characteristics of the
through-flow are known and given by a function r
(z) defining a stream surface and the stream tube
thickness b(z);

c) third, the calculation is carried out within the
potential flow approximation. Even though the
entropy production through shocks cannot be taken
into account, such a model is still valid for
compressible transonic flows where strong shocks do
not occur i.e., for relative Mach numbers that do
not exceed 1.3 or 1.4. The advantage of using such
a potential flow approach is to be found in the
small CPU times necessary to obtain solutions.
This turns out as a very strong point for a design
method which can therefore be used on an
interactive basis.

3.2 Computational domain and boundary conditions

In order to take advantage of the periodicity of the
problem, the computation is of course restricted to a
blade-to-blade channel. The profile is prolonged by a
pseudo-wake, without lift and with a constant angular
thickness equal to the trailing edge gap.
A C-topology is used to describe the computational
domain since it is well adapted to profiles with
relatively thick leading edges.

Upstream and downstream conditions are obtained from
any standard through-flow computation; the upstream
flow is prescribed via inlet angle and inlet relative
Mach number while the downstream flow is defined only
via the exit angle.
The other exit quantities are naturally obtained
through the continuity equation. These boundary
conditions are taken far enough upstream and
downstream so that the flow can be considered as
uniform.
The method can operate both in direct and inverse mode
depending on the kind of boundary conditions which are
applied on the profile: whereas a Neumann condition
corresponding to a zero normal velocity is usually
applied in direct calculations, a Dirichlet condition
is imposed in the inverse method. This condition
corresponds to the fact that the tangentia; velocity
(to the profile) must be eq-aal to a given W .
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3.3 Profile modification

The goal here is to find the shape which satisfies
both constraints:
a) zero normal velocity
b) tangential velocity equal to a given W

The solution of the inverse problem leads to a Slow
that follows the prescribed tangential velocity W on
the profile but does not necessarily satisfy the zero
normal velocity condition. The non-zero normal
velocity obtained from the algorithm is used to modify
the profile via a transpiration model: the
displacement of the blade surface is accounted for by
injection of fluid through the original blade surface
such that the new surface becomes a stream surface
(6]. The displacement normal to the profile is then
obtained simply by expressing the mass conservation
between two eloments of length ds on the profile (see
figure 1).

3.4 Inverse design alqorithm

The inverse method consists therefore of a sequence of
the following three-step iterations:
a) computation of the potential on the profile by

integration of the prescribed velocity;
b) computation of the potential in the domain by

solution of the continuity equation with a
Dirichlet boundary condition on the profile;

c) computation of the normal displacement of the
blade surface as described above and modification

of the profile.
While the first and third steps are simple
one-dimensional integrations, the second step
corresponds to the resolution of a two-dimensional,
second order, non linear partial differential
equation. The numerical method used to solve this
equation is a finite-element method developed by
Bredif (10] which will not be described here. Tran-
sonic flows can be handled by using a density upwind-
ing also presented in [10).

3.5 Numerical results for turbomachinery applications

Starting from an initial profile, three modifications
are generally needed in order to obtain good agreement
between the prescribed velocity distribution and the
one corresponding to the computed profile. The
inverse computation is aatomatically followed by a
direct calculation only to verify the convergence of
the procedure. With a 10 x 117 point C-grid (used in
most applications) the total computing time is about
15s on an IBM 3090 computer.

Lw
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Three examples are presented: one for a highly loaded
compressor rotor hub section, one for the root
section of a strongly quasi-three-dimensional turbine
nozzle and the last one corresponding to a case where
the robustness of the method is demonstrated.

Compressor rotor hub section

Figure 2 shows the compressor flow path. The stream
tube thickness is obtained from a through-flow
calculation which also provides all the input
parameters:
o inlet Mach number = 0.95
o inlet flow angle = 61.7
o outlet flow angle = -2.5
The initial geometry came from a previous calculation
and the initial velocity distribution (see figure 3)
was obtained by running the inverse code in its
analysis mode.
The objective for the calculation was to reduce the
peak Mach number on the suction side while retaining
the same solidity and maximum thickness. Figure 3
shows the prescribed velocity distribution vs the
original one as well as the new profile that was
obtained after three successive modifications. The
pitch angle and the thickness distribution have
changed in a substantial manner.

Hub section of a turbine nozzle

The case considered here corresponds to a
strongly quasi-three-dinensional section of a turbine
nozzle with a large stream-wise variation of the
stream tube thickness (outlet to inlet ratio of 1.3).
Designing such blading with a two-dimensional inverse
method results invariably in the occurrence of non-
uniformities in the velocity distributions.
For the present computation, the inlet and exit flow
angles are 31.4 and -610 respectively and the inlet
Mach number is 0.424.
The velocity distribution on the initial blade and the
target velocity distribution are shown in figure 4
together with the blade profiles. For this case, five
blade modifications were necessary to reach
convergence. The resulting profile remains very
smooth.

Example with a poor initialization

The case in Figure 5 involves large changes in the
profile from the initialization and demonstrates the
robustness of the method. Starting with a geometry
having a relative maximum thickness of 3% and a pitch

L
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angle of 25 , the code is capable of converging to a
new Profile with a thickness of 7% and a pitch angle
of 5 . After one iteration, a very large displacement
is observed but nonetheless the calculation remains
stable.

3.6 Extension of the method to the nacelle design

For the design of transonic blades presented up
to now, the complete 3D blade is obtained by
stacking a series of 2D profiles; this procedure
leads to a reasonable blade if the input pressure
(or velocity) distributions vary smoothly, and,
most importantly, if the flow is essentially two
dimensional, in the sense that there is a
preferential direction where little happens in
comparison to the other two directions. A complete
3D calculation using a more accurate model (Euler
or Navier-Stokes) is the definite proof that the
blade obtained by the inverse method possesses the
desired features.
The flow around a commercial aircraft inlet
(nacelle) demonstrates the "essentially 2D"
quality mentioned above and therefore the stacking
procedure can be used about its axis for the design
of this type of geometry. The method has been
extended with the following characteristics:

- basic assumptions:
a & c): same as in 3.1
b) the flow is considered to be axisymmetrical

and the potential equation is written and
discretized in the (z, r) plane.

- computational domain and boundary conditions:
a C-topology is used to describe the
computational domain extending around the inlet
from the compressor plane to the downstream
plane behind the nacelle. The four boundaries
and the conditions applied thereon are the
following:

o the inlet profile and its continuation until
the downstream plane; boundary condition:
either no mass flow for the direct
calculation, or Dirichlet condition on the
profile in the inverse mode;

o the compressor plane, with a prescribed
velocity distribution (varying Neumann
condition);
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o a three-segment boundary, including the axis
(no-mass-flow condition), the upstream plane
(prescribed velocity) and a far field boundary
(no-mass-flow condition);

o the downstream plane, with a prescribed
velocity computed from the mass balance
equation between this boundary, the upstream
plane and the compressor plane.

- the profile modification is carried out in the
same way as before, using the transpiration
model mentioned in 3.3 [6].

- the inverse design algorithm also remains the
same as in 3.4

We will now present a result proving once again the
robustness of the method with respect to
arbitrary initializations. A velocity
repartition (so-called "ideal velocity" on
figures) is computed by direct calculation around
a given profile ("ideal profile"); this profile
is modified into the "initial profile" by
thickening. The velocity distribution around
this profile is represented in figure 6. It
clearly shows an aspect different from that of
the ideal velocity. The inverse method has been
used in order to recover the ideal profile from
this initialization. The convergence
of the inverse algorithm is monitored by the
decrease of the mass flow across the profile for
each inverse calculation. The normal velocity
distributions for the first three iterations are
shown in Figure 7. After these iterations, the
normal velocity is zero on most of the profile,
except in the neighborhood of the leading edge.
These initial iterations determine therefore the
overall shape of the profile. The final
iterations (there are four of them here) tend to
precisely shape the leading edge of the profile.
The final geometry of the nacelle is compared to
the initial one in Figure 8.
This example has been carried out around the H208
nacelle, (an Aerospatiale nacelle which was tested
in a windtunnel at ONERA) in a subsonic case (Minf
= 0.30). it required 7 profile modifications
performed in one minute on an Alliant FX2800.
Transonic cases have also been tested and have led
to similar conclusions with a slight increase in
CPU time.

To conclude this section, it may be stated that the
method presented here is a powerful tool for the
design of turbomachinery blading. It is currently
being applied in the French industry for the
definition of high perfo:mance turbomachinery.L



Parallel research has been going on with the goal of
opening a new field of application in the domain of engine
inlet design for which the methcd has proven suitable.
Improvements are still being worked on especially in
the field of mesh definition for turbine applications.
The method has naturally some limitations. One of
these is the built-in potential approximation which
in fact leads us to the next section devoted to the
transonic inverse and semi-inverse method developed
initially by Meauzd at ONERA.

4. TRANSONIC INVERSE AND SEMI-INVERSE METHOD [81

Whereas the method described above solved the potential
equation, the one under consideration here deals with the
Euler equations which allow for the occurrence of shock
waves within the flow field .
This method was first developed by Meauze in the early
eighties as a follow-up of the transonic blade-to-blade
direct calculation developed at ONERA by Viviand and
Veuillot £11].
These authors made a valuable contribution to the
resolution of the Euler equations by using time-marching
methods where time is only a computational parameter and
the final asymptotic flow field is obtained as the steady
solution of the equations.

4.1 Overall description and concepts

The basic features of these methods can be
summarized as follows:
- the quasi-three-dimensional Euler equations are

discretized in the physical plane;
- a McCormack type predictor-corrector numerical

formulation is used;
- when strong pressure or velocity gradients occur,

an artificial viscosity is used, to smooth out
numerical instabilities;

- boundary conditions (wall boundary conditions or
inlet/outlet boundary conditions) are treated via
compatibility relations which are derived from the
theory of characteristics.

Using this framework, Meauze developed an inverse
method in which the standard zero normal velocity
boundary condition on the profile can-be completely or
only partly replaced by a static pressure (or
velocity) condition. Whatever the case, the boundary
condition problem is always dealt with via the
compatibility relations. When operating in inverse
mode, the profile and consequently the grid system
must be updated. This can be accomplished either
through reconstruction of the blade surface by using
the flow angle computed at each wall grid point or,
more rigorously, via a transpiration model like in the
previous method.
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4.2 Inverse and semi-inverse methods

What makes the method especially attractive for the
designers is the fact that not only does it allow the
defining of blading in the transonic regime, but it
can also operate in the semi-inverse mode. This makes
it possible to apply a given boundary condition on one
part of the profile - say a pressure distribution -
while retaining for instance the initial geometry on
another portion of the blade. Localized corrections
of the geometry can therefore be implemented in order
to improve the overall aerodynamics of the blade.
Of course, for such applications, special care must be
taken at the junction between the direct and inverse
calculations. This is especially true when the flow
is locally subsonic; then a smooth transition from the
prescribed to the computed pressure distribution is
required.
On the other hand, for locally supersonic flows, jumps
in static pressures are allowed which would correspond
to crossing shock waves or expansions.
One interesting version of the code allows prescribing
of the pressure distribution on only one blade surface
- generally the suction surface - while the other
surface is determined from purely geometrical
considerations, such as a thickness distribution.
One may note that, in this case, the cascade solidity
may be chosen in advance since the profile is
automatically closed. However, one drawback is the
lack of control over the velocity distribution on the
surface for which the pressure distribution was not
prescribed. Moreover, two solutions to the problem
can exist. Numerical experiments have demonstrated
that only solutions corresponding to small flow
deflections are stable. Therefore, this method is
really only suitable for compressor applications.

4.3 Numerical results

Three examples will be presented: the first
corresponds to the definition of a high supersonic
blading on the second stage of a rocket turbopump; the
second one is devoted to the design of a high pressure
ratio turbine cascade; finally, the third application
deals with the definition of a supersonic compressor
profile.
These three cases have been selected to give examples
of the various modes of operation of the method and
will demonstrate its versatility.

L
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High supersonic turbopufp rotor

The case considered here corresponds to the redesign
of the mean section of the high supersonic rotor of a
rocket turbopump. For this configuration, the direct
calculation on the original blade showed that the
upstream flow was started, i.e., the inlet flow angle
is fixed by the unique incidence phenomenon. An inlet
relative Mach numbeE of 1.22 was obtained for an
inlet angle of 48.5 . The results of this direct
blade-to-blade calculation are shown in Figure (9a).
Strong shock waves are observed throughout the blade
channel with a strong normal shock on the suction
side.
An attempt was made to improve the situation with the
inverse method operating in its semi-inverse mode.
The pressure distributions were prescribed on the
pressure and suction surfaces but only over part of
the blade. In fact, for this case of supersonic inlet
flow, the goal was to leave the inlet conditions
undisturbed in order to guarantee adequate matching
between the blade rows. The blade entrance region
consists of a straight part on the suction side. The
slope 'of this straight portion is chosen such as to
obtain the specified unique incidence computed with
the original blade. The pressure distribution is then
prescribed downstream of this entrance region.
Figure (10a) shows the selected distributions; on
the pressure side, the flow becomes subsonic and the
pressure gradient is chosen so as not to cause
boundary layer separation. A smooth pressure
distribution is prescribed on the suction side where
the impingement of the shock has been deleted.
The resulting pressure field is presented in
Figure (10b). An oblique shock is observed at the
leading edge on the pressure side. On the suction
side, a sharp change in the slope of the surface is
observed which compensates for the impinging shock.
The calculated relative inlet Magh number is 1.21 and
the computed inlet angle 48.3 . These are in good
agreement with the results of the direct
blade-to-blade calculation on the original blade.
The result of the direct blade-to-blade calculation on
the redesigned rotor profile is shown on Figure 11.
Good agreement is likewise observed between the
inverse and direct calculations.

High pressure ratio turbine cascade

Here again, the code is used in its standard semi-
inverse mode for which the pressure distribution
was prescribed on both blade surfaces but only
downstream of certain points on the surfaces.

L



Upstream of these points, the initial geometry of the
blade is retained and the method operates as a direct
blade-to-blade computation. Figure (12a) shows, as
broken lines, the initial pressure distributions with
suction side non-uniformities. Also presented are the
prescribed pressure distributions shown in solid
lines. The blade shapes corresponding to these
pressure distributions are shown in Figure (12b).
Again, the solid line corresponds to the modified
blade. Note that the solidity has changed, with a
slight increase of the pitch.

Supersonic compressor cascade

This case is a typical example of the me.thod
described above where the blade is defined using a
mixed type of aerodynamic and geometrical data. Here,
the method is applied to the design of a supersonic
compressor profile with an inlet Mach number of 1.2.
Figure(13a) presents the initial pressure distribution
where a shock at a peak Mach number of 1.6 occurs on
the suction side near the trailing edge causing an
increase in the loss and probable separation. The new
blade is now obtained by tailoring the suction side
pressure distribution so as not to exceed a peak Mach
number of 1.42. The initial blade thickness
distribution is retained.
Figure (13b) shows the new profile compared to the
initial one. As can be seen, the difference between
the two geometries is very small (which, by the way,
ought to make us wonder what really happens in the
machine when all manufacturing deviations have been
taken into account).
The newly computed pressure distribution on the
pressure side is also presented in Figure (13a). It
exhibits a rather irregular shape especially in the
trailing edge region. This is due to the evolutions
of the pressure side curvature in this rear part of
the blade which necessarily "follow" those of the
suction side since the thickness distribution is
prescribed.
This is one of the drawbacks of the method although a
local correction of the blade on the pressure side can
usually improve the situation without deteriorating
the suction side pressure distribution.

4.4 Current developments

As stated earlier, this inverse Euler code must really
be considered as a by-product of the direct
blade-to-blade calculation. As a consequence, a major
overhaul of the code is under way which reflects the
improvement brought to the direct flow computation.

L



135>' '

Most of these improvements have been obtained on the,
mesh itself where the standard H-grid has been
replaced by an H-C or H-C-H one with a multi-domain
approach (compatibility relations are used at the
boundaries between the domains). The improvement is
especially to be found in turbine applications where
round leading edges can be properly modelled
(see Figure 14).
In a parallel effort, the algorithm has been modified
in such a way that the inverse mode and the profile
modification procedures are now only applied after
convergence has been achieved on a given intermediate
geometry. Although this brings about some
penalization of the computing time, this approach
gives better quality solutions.

CONCLUSION

Two quasi-three-dimensional inverse methods have been described
above. Taken as a whole, they allow the defining of
turbomachinery blade profiles throughout the entire Mach number
range of interest for jet engine (even rocket engine) rotating
components. Examples have been presented for compressor and
turbine profile designs.
Both methods are currently being used throughout the French
industry. A parallel research effort is still under way to
improve them and extend their fields of application. The next
step will certainly include coupling with a boundary layer
calculation in order to better predict viscous effects.
It is obvious, however, that even such improved methods will
have their limitations. The next significant step in
turbomachinery design will have to be found in optimization
techniques similar to the ones developed for external
aerodynamics. Although some progress has been observed in this
domain in the recent past, it is still widely believed that a
breakthrough in the field of fundamental mathematical analysis
will be required in order to formulate this complex multi-param-
eter problem.
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RESEARCH ON INVERSE, HYBRID AND OPTIMIZATION PROBLEMS
IN ENGINEERING SCIENCES WITH EMPHASIS ON TURBOMACHINE

AERODYNAMICS: REVIEW OF CHINESE ADVANCES

Gao-Lian Liu, Professor
Laboratory of Turbomachinery Aerodynamics

Shanghai Institute of Mechanical Engineering
516 Jun-Gong Rd, Shanghai 200093, China

ABSTRACT
A brief review of advances in the inverse design and optimization theory in the

following engineering fields in China is presented; I) Turbomachine aerodynamic inverse
design: including mainly: (1) two original approaches--image-space approach and varia-
tional approach , (2) improved mean-streamline (stream surface) method, (3) optiNization
theory based on optimal control. I) Other engineering fields: inverse problem of heat
conduction free-surface flow, variational cogeneration of optimal grid and flow field,
optimal meshing theory of gears.

I. INTRODUCTION

Up to now, most(over 95%) of the technical literature deals only with the direct
(analysis) problem due to possibly the fact that the inverse(design) problem(finding the
unknown boundary shape) is, in general, much more difficult to formulate as well as
to solve than the direct one, though the inverse problem is more important for , and di-
rectly related to, practical design. As a result, for instance, almost all turbomachine
btadings are still designed by repeated use of direct problem methods in a cut-and-try
manner, which is of course not only inconvenient and time-consuming, but also incapable
of providing very good results.So in the 1950's in China we have tried to apply the mean-
streamline method for inverse problem of Wu & Brown(30) to cascade design and some impro-
vements of this method were suggested[2]. In the 1960's a new image-plane approach to the
inverse problem was proposed [5]. It was realized, however, that also the inverse problem
can not be successfully used for practical blade design because it often leads to blade
configurations that are either unfeasible from consideration of stress, vibratlion coo-
ling and technology or even unrealizable(e.g. giving profiles unclosed or with ne-
gative thickness). Therefore the traditional direct and inverse problems can not keep
up with the development of modern turbomachinery(TN) and it was suggested in Refs.[18,561
to extend the scope of aerodynamic problems and reclassify them into four categories: di-
rect, inverse, hybrid and optimization problems. Then the image-plane approach was ex-
tended to hybrid problem in Refs.[6,561, and another new approach to inverse and hy-
brid problems based on variational principles (VPs) was also suggested in Refs.[(1, 211.
Since then a lot of variants of the image-plane approach, the variational approach and
the mean-streamline method have been developed in China and extended to 3-D case.

The Chinese research on the optimization problem of btadings started with the pro-
blem of optimal radial distribution of flow parameters in TM with ton9 twisted blades in
1963[52]. Later, advances in this area are characterized and facilitated considerably by
the introduction of modern optimal control theory.
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II. RECLASSIFICATION OF ENGINEERING PROBLEM SETTING

Generally speaking, any problem of engineering sciences can be posed in different
ways, resulting in four problem categories: direct, inverse, hybrid and optimization pro-
blems. Specifically, for the aerodynamic problem of blade cascades these problems are
defined conceptually in Table I. The aerodynamic problem for S2-stream surface can be
classified similarly as shown in Table II.

The hybrid problem is a unification as welt as a generalization of the direct and
inverse problems, encompasses a wide variety of types(see Table III for cascades on
arbitrary streamsheet of revolution) and hence is very flexible and capable of meeting
various design requirements. It provides design engineers with a series of new rational
versatile ways for blade design. In addition, the inverse and hybrid problems also cons-
titute an important ingredient of the optimization problem.

Table I. Problem Classification of Cascade Flow

problem Given To be sought

1I Direct (D) cascade geometry velocity field

2 Inverse(I) surface velocity distribution cascade geometry

3 Hybrid (H) 'partly geometric conditions' & the remainding unknown
'partly flow condition' geometry & flow field

4 Optimiza- 1)objective functional optimal cascade geometry
tion (Apt) 2)design inequality constraints & flow field

Table II. Problem Classification of S2 -Flow

Given
problem-- ------------ -------

on S2  on hub & casing

complete geometry
Direct Shape

semi- pressure distribution

complete pressure distribution
Inverse Vr -----------------

seal- geometry

Hybrid Shape or VYr 'partly geometry'- 'partly pressure
distribution'

Optimization 1) objective function
2) inequality design constraints
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Table III. Hybrid Problem Types of Cascades

Given conditions
Types --- -- y----- -------

geometric aerodynamic

HA part of airfoil form velocity distribution along the
remainding part of profile contour

HB  airfoil thickness blade loading distribution
'distribution (p-ps)

HC  airfoil thickness velocity distribution along the
distribution suction surface

HD airfoil thickness distribution of velocity difference
distribution (Ws-Wd)

Since the hybrid problem of fully 3-D flow may have a wide variety of types,
depending on the manner in which the boundary conditions (B.C.) on the blade surface are
combined with those on the annuclar walls, it is necessary to employ some properly
defined compound symbols to designate them as proposed in Refs. [46,471. For instance, the
symbol CIXHA) designates such a hybrid problem type in which an inverse problem is posed
on the blade surface, while a HA-problem is posed on the annular wats(Fig.1a). In other
words, the symbol before 'X' characterizes the problem type on the blade surface, while
the symbol behind 'X'--that on the annular walls. It is easy to see that the scope of
possible hybrid problem types can be made even much broader by posing different problem
types on different portions of the blade(and/or annular) watts (Fig.lb).

III. INVERSE & HYBRID PROBLEMS OF BLADE-TO-BLADE FLOW IN TURBO4ACHINES

The research on inverse and hybrid problems In China has been going basically along
the following three lines: (I) universal approach based on image-plane concept; (it) uni-
fied approach based on variational principles (VPs) and the related finite element method
(FEN); (iii) improvement of the mean-streamline method and of other well-known methods.

1) Universal Approach Based on Image-Plane Concept
Two different image planes sf and g have been introduced:

1-1. Methods based on image-plane Jf.
The first universal image-plane method for solving the inverse problem of 2-D com-

pressible cascade flow was suggested by Liu In 1964 (5] and extended to cascades on
arbitrary streamsheet of revolution by Liu & Tao in 1967[6] and to hybrid problem HA by
Liu & Tao in 1981[6]. The main difficulty is the treatment of unknown boundary(blade
surface) and was successfully overcome by introducing a nonorthogonal curvilinear(stream-
Line) coordinate system (von-Mises coordinates) defined by (Fig.2, where I should be rep-
laced by jr)

5 =(, or: j~)

where the stream function l) is defined by



148

Third International Conference on Inverse Design Concpts and Optimization in Engineering Sciences

(OCIDES-11h. Editor G.S. Dulikravich, WashintCon D.C.. October 23-25 1991

q r  cu p . 2

It is expedient to regard Eq.(1) as a mapping, which transforms the original irregu-
lar periodic flow domain with some unknown boundary(AB in HA-problem, Fig.2a) on the
physical stream surface into a simple rectangular one with fully known boundary in the
image plane (Fig. 2b). Moreover, the following four alternative formulations were derived
in Ref. [5, 61 s

i) first-order partial differential equation (PDE) system
ii) second-order PDE
iii) integro-differential equation
iv) integral equation system,

of which only the integro-differentiat formulation for homentropic flow is givn here for
reference [6]z

++r ~VL 1  (3)

where

(-2) , O =Trpe 4

-2c)B C., ,.. _

OA)

Here A wlao) and Au(=6r/ .) are dimensionless relative velocity and blade speed
respectively; m=(X-)' ; a--reference speed of sound; cO---rotor angular speed; 6C-
the contour abcda of a finite area FA (Fig.2b).

A HA-and an inverse problems of a cascade on a general streausurface of revolution
have been solved by this method by Chen et at. in Ref. [71.

This method was then improved considerably by Liu [8] via introducing a new moment
function fl defined by

-6p et-r- /J (6)

The moment function has some special features, for instances (i) its increment
around any closed contour enclosing an airfoil AR is just equal to the aerodynamic mo-
ment M7 exerted on airfoil:

A.f= M7= F- * (7)

This is just a generalization of the well-known Kutta's Lift theorem for 2-D flow,
showing that M7 is proportional to both absolute circulation around airfoil r and flow
rate through an interbtade channel Al. (ii) the pressure p can be computed directly from
Eq.(5), resulting In two advantages: first, no density anbiguity[8O] appears; second, for
the inverse problem the B.C.(i.e. the distribution of R ) on the airfoil contour is of
the Dirichtet's type and hence easy to deal with. Also in this case the four alternative
formulations mentioned above are possible, of which only the second-order PDE formulation
is given below:
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L-621

where AB,C,D,E are functions of Mach number, e , T and 7,(Fi9. 2); F is a function of the
gradients of entropy and rothalpy. In Ref. [8] an inverse problem of a cascade on a
conical streassurface taken frowRef.[78] was solved and the result is given in Fig.3.

Later, a number of methods using this image plane I have been also published in
Refs[9-121, differing from one another, however, by different choice between the four
above-mentioned formulations and by different iterative strategies. Thus, in contrast to
Refs. [5,6], Shen & Ma [9] solved the HA -and Hr -problems of 2-D transonic cascade flow
by employing the 1st-order PDE formulation and Jameson's rotated difference scheme, while
Chen & Zhang[10], using the second-order PDE formulation for the dependent variable 52(',V),
presented a numerical method for solving direct, inverse and hybrid HA -problems along
with three numerical inverse problem examples, of which the one for a tandem cascade is
given in Fig.4. Some difference between the calculated and original profiles might be at-
tributed to the use of the measured velocity distribution as input for the calculation.
This method has been modified by Sun et al. in Ref.[ll] by using a boundary-fitted coor-
dinate (see Eq.(9)) instead of T . The numerical result of a supercritical cascade to-
gether with its modified design is shown in Figs.5 & 6. In Ref. [12] a method similar to
Ref. [10] for Hr - & I-problems was presented for rotational flow, and a method for remov-
ing the density ambiguity is also given. In addition, a rational cascade design proce-
dure consisting of successive use of Hc,-and I-problems is proposed.
1-2. Methods based on image-ptane 9 n.

All methods using image-plane g * suffer from the shortcoming that singutarities
appear in the vicinity of blunt leading and trailing edges due to local multivaLuedness
of the mapping Eq.(1). To circumvent this difficulty, another method for hybrid problems
was suggested by Liu [13], where a new image-plane defined by (Fi9.2)

I 2. or: fD

was introduced, where and (the 7-values on suction & pressure sides) are given
constants. Also in this case four alternative formulations can be derived, but only
the integro-differentiat formulation is given here for reference (Fig. 2b):

- T)01
M (10)

where tg? is the slope of the s-coordinate line; H/ is the scale factor of
the coordinate 'j ; 5T= -Y, is the angular width of the blade channel. We can see that
this new image-plane method is particularly advantageous for solving those hybrid prob-
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Lens with given airfoil thickness (and hence H is also known).
Other methods based on N-image plane, using, however, the following second-order

PDE formulation, have been presented by Chen et at. [14,15] and Ge[16l:

AX~~IY-A .AA' 2 A-=t (13)lb , -2 Z..r

where AjtA2,A3 A4,A,5are functions of p and the metric tensor 9 2 , 923; Bi depends on the
gradients of entropy and rothalpy, velocity,ao, 6" and viscous forces. In Ref, [14] the HA-
problem of potential flow is solved and one of the numerical examples is given in Fi9.7.
The figures 8 h 9 taken from the viscous inverse problem solutions of Refs. [151 & [161
respectively show that for the sane inlet and outlet flow angles the airfoil in viscous
flow is more, strongly curved than that in inviscid flow.

2) Unified Approach Based on Variational Principles
Basically there have been developed two completely different variational approaches,

following a systematic way suggested by Liu[171].
2-1. Approach based on VPs in the image plane lY(Fig.2)

In Ref.[181 Liu established two families of VPs and generalized VPs in terms of the
moment function 1. and angular function respectively for the HA- and He-problems in the
image plane 11r, which were modified by Liu & Yao to give the VPs for the H.-probtem in
Ref. [19]. Only one of these VPs is given below:

J(11) =Jf{A+2rQ x m - r ± }d+A ± (14)

where the boundary integral term LIVtakes different form for different problem types.
Based on these VPs invotvingfl, some finite element (FE) solutions to HA-and HS-problems
have been presented in Ref.[20] by Yao et at., from which Figs. 10 & 11 for a cascade on a
conical stream surface [78] are taken.
2-2. Approach based on VPs with variable domain.

Making use of the functional variation with variable domain, Liu was able to
establish three families of VPs and generalized VPs for HA-, HB-and Ho-problems in terms
of the potential and stream functions f & F for potential and rotational flows in Refs.
[21,22] and extended them to transonic flow with shocks in Ref.[24]. Moreover, variable-
domain VPs using Clebsch variables have been also developed for 2-D transonic rotational
channel flow by Liu[25].

Numerical solutions to HA-and Hc-problems based on VPs of Refs. [21,221 have been
obtained by Yan b Liu[22,23] by means of a new finite element with self-adjusting nodes
for numerical realization of the functional variation with variable domain(Figs.12 & 13).

Perhaps a very attractive merit of this variable-domain approach is that it can be
straightforwardly extended to fully 3-D flow.

3) The Mean-Streamline Method (MSLM).
This method originally suggested by Wu & Brown[30] was improved in many aspects in

China. A survey of this development before 1984 has been presented by Cai1[21. Recent
research includes Cai's paper [3] and Wang's paper [4].

4) Miscellaneous Approaches.
Several known approaches to inverse design of cascades were improved or modified in

China.
4-1. Iterative method based on direct problem solver.

Such a method is suggested by Wang in Ref. [26] to solve inverse and various hybrid
probtems(including HA & Hr) and extended to viscous flow in Ref. 121 by incorporating a
boundary layer solver of integral type. Based on this method, Wang et at. proposed a
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quasi-'3-D design procedure for ispetlers[28,291.
4-2. Time-dependent method.

Starting from the integral form of aerodynamic equations, a finite-votume method for
inverse cascade problem is given by Zhou & Zhu[31].
4-3. Hodograph method.

It was improved in the transonic region by incorporating some analytical nozzle so-
lutions and generalized to cascade flow along general streamsheet of revolution indepen-
dently by Chen[32] and Yao[33].

IV. INVERSE & HYBRID PROBLEMS OF S2-FLOW IN TURBOACHINES

Similarly to SI-flow, the image-plane approach and the VP-based approach mentioned
above can be applied to S2-flow as welt.

1) Unified VP-Based Approach.
Starting from the basic equations of Wu's S2 -flow model[l,791, first complete VPs

and generalized VPs for the semi-inverse problem were established by Liu[34] and the
corresponding FE solutions were obtained 'by Qin et at. [35]. Inverse and hybrid problems
of S2-flow were formulated In a unified manner by VPs with variable domain by Liu[361 and
by VPs in an image-plane Wi by Cai & Liu[37], which have been generalized to flow of
pure substance by Xu[38]. In Ref.[39] VPs for hybrid problems of axisymmetric channel
flow were derived by Tao & Liu.

2) Universial Image-Plane Approach.
Using an image plane jff and given a distribution of circulation vyr on S2-surface,

Ge presented a method for solving the complete inverse problem and a hybrid problem(with
unknown hub(or casing) walt, see Table II), thereby a second-order PDE for r(j,j) was
derived and solved [401.

V. INVERSE b HYBRID PROBLEMS OF FULLY 3-D ROTOR-FLOW

For these problems three apprcaches have been developed in China.

1) Method of Mean-Stream Surface.
It was originally suggested by Wu in 1952[l] by a Taylor-seise expansion of flow

parameters in the azimuthal direction as an extension of MSLM[30, 2]. It was improved,
numerically elaborated and applied to design by Zhao et at. in Refs.(41, 421, where
an annular constraint condition is set up, which must be satisfied to ensure that the
hub/casing walts are axisymmetric.

2) Universal Image-Space Approach.
In Ref. [43] Liu developed a universal image-space theory of hybrid problems for

fully 3-D potential flow, which is a generalization of the image-plane approach of
Ref. [13]. Applying tensor calculus and Stokes theorem, the basic flow equations are trans-
formed into the following integro-differentlal equation system for the stream functions

and I/2 in the image space 12 3 (Fig.14b):

nd () (ere4re a 0 Io }nV; (16)

and Eq.(S), where V~ are the contravariant components of the velocity AIn a body-fitted
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nonorthogonal curvilinear coordinate system i(Fig. I6a). Similarly, a corresponding
potential function formulation by integro-differential equations of this theory has been
also presented by Liu et at. [441.

A similar method for solving 3-D hybrid problems was put forth by Chen et at. [451,
using, however, a second-order PDE formulation:

This equation was solved numerically by the method AF2, the multigrid technique and
the artificial density in the transonic region. To greatly simplify the numerical
solution, the inverse problem is modified in such a way that the physical contravariant
velocity componentsA4'(assuming that Lcoordinate is the strentike line) rather than
the fully velocity A is prescribed on the blade surface. An axial compressor rotor was
redesigned and improved by this method as shown in Figs.15 & 16.

3) Unified Variable-Domain Variational Approach
The variable-domain variational approach[21, 22] has been extended by Liu to' hybrid

problems for fully 3-D inconpressible[46], compressible[471 and transonic[481 flows in
rotors. Only one of the VPs is given below for reference:

--# #f~i j(v - ,~~~nt t~L (18)

(V)

where the boundary Integral tern L takes different form for different problem type, Note
that the variable-domain variation of J2 should be taken at the unknown boundaries A',
(blade surface)and A2d (free trailing vortex sheet). Corresponding numerical solutions to
incoPressible(HD)-problem of Mizuki's centrifugal compressor[51] and to compressible
([Hc+D]XD)-problem of an axial turbine stator have been obtained by a novel FE with self-
adjusting nodes in Refs.[49] and [50] respectively and are shown partly in Figs.17 & 18.

VI. OPTIMIZATION OF AERODYNAMIC DESIGN OF BLADING.

1) Optimization of SZ-Ftow.
A basic and very important problem in this context is the optimal flow type(i.e.

optimal radial distribution of flow) in biadings. This problem was first studided by a
variational method by Liu[52] and later by Xue[531 and Lu[54]. Recently, this problem was
treated by an optimal control method by Gu & Miao[55], so that various inequality design
constraints can be accounted for.

2) Optimization of 2-D Cascades.
Theory of optimization of cascade profile shape can be founded on the basis of one

of the following flow models.
i) Simplified model(LeFoll, Citavy)

Su o sBoundary layer

a single airfoil +

Inviscid external flow
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!I) Refined-modet (Liu[57.-591)

Inviscid core flow

Boundary layer

Perhaps, a third,- most accurate flow model based on Navier-Stokes equations incorporating
some turbulence models should be also tried.

Two possible mathematical models(formulations) can be used here, namely: a) mathema-
ticat programing problem, b) optimal control problem.
2-1. Optimization based on the simplified flow model.

The problem of determining the optimal velocity distribution along the suction side
was formulated as an optimal control problem with some inequality design constraints
(e.g. separation-free, maximum or minimum velocity limit, etc) and solved by a heuristic
grapho-analytical method by Liu[56,631. This approach is followed by Wang(60] In the
design of an axial ventilator. Having calculated the optimal velocity distribution along
suction side and specified a reasonable airfoil thickness distribution, a Hc-problem was
solved by the image-plane method given in Refs. [5,6] 'to yield the optimal airfoil shape.
A similar method, with some modifications, for optimizing 2-D compressor cascade was
presented by Hua & Chen[61], where a method for estimating the airfoil circulation was
given and the optimal airfoil shape was obtained by MSLM[20,30].

The optimal velocity distribution along the suction side on a general streamsheet of
revolution was obtained by Zou[621, using Hager's transformation of turbulent boundary
layer.

In Ref.[63] some generalizations of the LeFolt's optimization theory of blades were
given by Liu & Wu to accommodate different objective functionats with more general
constraints.
2-2. Optimization based on refined model.

In Refs. [57,59] Liu suggested a new theory of optimal 2-D cascades based on the
above-mentioned refined flow model, in which this problem has been formulated as an
optimal control problem with multiple inequality design constraints on control-and phase-
spaces. Two typical optimal control problems were considered: cascade with minimal tosses
and cascade with maximal loading (circulation), and a duality theorm between them has
been proved theoretically, so that It is sufficient to study only the cascade with minimal
losses. This theory has been generalized to 2-D compressible flow and to a 3-D axial-flow
rotor by Liu[58]. The essential feature of this theory ties in its capability of handling
a wide variety of practical design constraints(from stress, vibrational, cooling and te-
chnotogical considerations) in a unified manner so as to make the optimal solution surely
feasible and suitable for use in practice.
2-3. Local optimization of transonic cascades

Jiang et at. suggested a numerical method for weakening shocks in transonic cascades
by local optimization of airfollt shape[64]. The airfoil contour segment near the shock is
represented by a cubic parabola with free coefficients aa,a3 a4. Then the Mach number
just before the shock Ms.is minimized with respect to aj.

3) Optimal Design of Diffusers.
The optimal design of 2-D diffusers was considered by Gu & Ji[661 using optimal
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control for searching optimal walt shape that maximizes the pressure recovery of diffuser.
A more general optimization problenof diffuser was put forth by Liu et at. in Ref.[65],
where not only the walt shape but also the wall suction distribution that maximize the
pressure recovery without boundary layer separation are sought by optimal control method.

An 1-D optimal design method for turbine annular axial-radial exhaust diffuser was
presented by Ling & Jin[67] based on an approximate loss model. The pressure recovery
coefficient of an optimal diffuser designed in this way has been shown higher than the
conventional one by 7% by expiment.

4) Other Optimization Problems.
Making use of the Parson's number and the concept of optimal reaction degree, Yao

presented a method for optimizing aerothermodynamic parameters in one-and mutti-stage
steam turbine design. Some guidelines for optimal design of long twisted blades are given.

In Ref.[69], based on the diffusion factor and equivalent diffusion ratio, the
optimal solidity problem of 2-D compressor cascades is formulated by Liu as nonlinear
programing problems, whose analytical solution in form of simple formulae is very
convenient for practical use.

A simple approximate method for determining the optimal relative azimuthal position
of two blade rows in tandem cascades is suggested by Wu & Feng(701 using a simple total
pressure loss model.

VII. MISCELLANEOUS INVERSE, HYBRID & OPTIMIZATION PROBLEMS IN ENGINEERING SCIENCES

In Ref.[71) the finite element method is generalized by Liu & Zhao via variable-
domain variations in such a way that the nodes are movable. It allows both optimal grid
and flow field to be cogenrated simultaneously and naturally using directly the VPs of
aerodynamic problems.

The inverse problem of heat conduction with unknown boundary was handled by Liu
Zhang[72] using Ritz's and FEM based on Variable-domain VPs. An alternative method for
solving this problem was suggested by Liu[731 by introducing an image plane Ty'i(T and
j' stand for traniormed temperature and heat stream function respectively). An interest-
ing invariance property of the nonlinear inverse problem solution with respect to varia-
ble conductivity is pointed out. An example is solved by FEM based on a pair of comple-
mentary extremum principles.

The inverse and hybrid problems of free surface flow under gravity over a dam are
posed and handled by Liu via VPs in an image-plane 4([74] and VPs with variable domain
in the physical plane[75,76].

In Ref.[77] Liu suggested a novel problem in gear theory--optimal meshing(i.e.
optimal tooth profile) of spur gears and its variational theory. An analytical solution
to the optimal meshing with minimal friction Losses has been obtained and it has been
revealed that the cycloidat gearing with radial tooth profile on the tower half tooth
height used widely in watches and clocks can be regarded approximately as a practical
gearing with maximal efficiency.

VIII. CONCLUDING REMARKS

Research on inverse,hybrid and optimization problems is of great theoretical as
well as practical importance in engineering sciences. To our experiences, the three new
approaches(image-space approach and VP-based approach, especially its variable-domain
variational variat, for inverse and hybrid problems; optimization approach based on
optimal control) suggested and intensively developed in China in the last two decades
have proved to be efficient tools for inverse design and optimization not only in turbo-
machinery aerodynamics in particular but also in engineering sciences in general and
deserve further development and application to practice. Design engineers and industry
will surely benefit a tot from then, if a complete set of computer codes based on these
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approaches can be finished and organized into a computerized automated interactive
design system(something like that of Ref.[81].
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SUMMARY

The boundary conditions corresponding to the design problem when the blades being simulated by the
bound vorticity distribution are.presented. The-3D flow is analyzed by the two steps S2 - S1 approach. In
the first step, the number of biades is supposed' to be infinite, the vortex distribution is transformed into an
axisymmetric one, so that the flow field can be analyzed in a meridional plane. The thickness distribution of
the blade producing the flow channel striction is taken into account -by the modification of metric tensor in
the continuity equation. Using the meridional stream function to definethe flow field, the mass conservation is
satisfied automatically. The governing equation is deduced from the relation between the azimuthal component
of the vorticity and the meridional velocity. The value of the azimuthal component of the vorticity is provided
by the hub to shroud equilibrium condition. This step leads to the determination of the axisymmetric stream
sheets as well as the approximate camber surface of the blade. In the second step, the finite number of blades is
taken into account, the inverse problem corresponding to the blade to blade flow confined in each stream aheet
is analyzed. The momentum equation implies that the free vortex of the absolute velocity must be tangential
to the stream sheet. The governing equation for the blade to blade flow stream function is deduced from this
condition. At the beginning, the upper and the lower surfaces of the blades are created from the camber surface
obtained from the first step with the assigned thickness distribution. The bound vorticity distribution and the
penetrating flux conservation applied on the presumed blade surface constitute the boundary conditions of the
inverse problem. The detection of this flux leads to the rectification of the geometry of the blades.

NOMENCLATURE

r circulation
V. upstream velocity
h pitch of the cascade
a inlet angle

outlet angle
potential function
stream function

f(Z), f(m, 0&) bound vortex distribution function, or loading function
dl tangential displacement
0 camber line inclination angle with respect to the meridional plane

z, y Cartesian coordinates
z, 6, r cylindrical coordinates
e , e2' body fitted curvilinear coordinates
g determinant of the metric tensor
gij metric tensor elements
Nb number of blades in the rotor or stator
r6ae thickness of the blade measured in the azimuthal direction
i22 modified g22 simulating flow channel striction
g determinant of the modified metric tensor (flow channel striction)
p density
U1 , U2 , U3  contraviant components of the absolute or relative velocity
17 absolute velocity
IV relative velocity
Ve azimuthal component of the absolute velocity
m meridional streamwise curvilinear abscissa j
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w angular-velocity of the rotor
"J p pressure

Pt total pressure
H stagnation enthalpy or Pt/P
I rothalpy or H + w (Vo)
P3  blade force
Pd dissipative force

efficiency
X1 , X2  transformed coordinates system in Si approach
Subscripts

le ' leading edge
te trailing edge
o reference
t tangentiel component
,n normal component
i'k nodal point indices
-Superscripts
+ upper side of the blade

lower side of the blade

1. INTRODUCTION.

Most of the blading design procedures consider the velocity distribution on both sides of the blade as the
initial data, the inverse problem becomes ill-posed and the designer loses the control of thickness distribution of
the blade. To overcome this deficiency, this paper suggests an inverse method by representing the blades by a
distribution of bound and free vortices which produce the desired swirl (Ver) variation. By introduction of the
notion of associated elements on both sides of the blade in respect of the thickness distribution, and by imposing
a conservative flux penetration through each pair of the associated elements when the geometry of the blade
is not yet well defined, we obtain the well-posedness of the inverse problem. The iterative rectification of the
camber surface in order to cancel the flow penetration leads to the final geometry of the blade. Treating first
the 2D cascade design, §2 is devoted to show how to get the well posed inverse problem with the appropriate
,boundary conditions applied on the presumed blade contu-r, and the procedure leading to the rectification of
the canber line related to the penetrating flux of the fluid determined on both sides of the blade. To treat the
quasi 3D design, the S2 and Si approach as proposed by C.H. Wu Ill is adopted. The loading produced by the
velocity difference between the two faces of the blade is directly related to the bound vorticity distribution that
the blade has to generate. Assuming the number of blades infinite, the vortex distribution as well as the flow
field become axisymmetric (S2 flow), §3 shows how the blade thickness distribution and the loading distribution
can be taken into account in this scheme, and how to deduce the pressure distribution on the blades when their
number is finite. An application to the case of the centrifugal impeller is presented. The loss scheme by the
introduction of a plausible value of efficiency j7 for each streamline as suggested by J.H. Horlock [21 is used. This
approach opens up possibilities for the elaboration of a design which maintains the assigned value of the total
pressure gain in each stage by modifying the (Ver) distribution in free space between blade rows. §4 is devoted
to the blade to blade flow (Si) inverse problem, the boundary conditions for 2D inverse problem are transposed
to this quasi-3D flow. The stream function is used to define the flow field and the finite volume method is used
to solve the problem. Examples show the results concerning the design of centrifugal impeller.

2. INVERSE PROBLEM FOR THE 2D CASCADE.

Figure 1 shows the geometry of the blade characterized by its thickness distribution and the shape of
its camber line. The arc elements taken respectively on the upper side and the lower side tangential to two
inscribed circles centered on the camber line at x - dx/2 and x + dx/2 are called associated to the camber line
element. The center of these associated elements are characterized by the abscissa x of the camber line element.
Let V represent the upstream velocity, h the pitch of the cascade, a and P the inlet and outlet flow angles, the
circulation r of the bound vortex generated by the blade is given by:
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r-= Voh(sin a - cos a tan #)

The bound vortex distribution on the blade can be represented by the function rf(x), where f(x) has to be a
monotonic increasing function of x for the inverse problem: ff(xZe) = 0, f(xt,) = 1. and df/dx _ 0 defines the
local loading. Figure 2 shows the typical form of the function f(x), df/dx = 0 must be imposed near the trailing
edge in order to obtain the zero loading according to the Kutta-Joukowsky condition; when the zero loading
condition is imposed near the leading edge, the design will give a blade with adapted leading edge. The flow
field can be represented by the velocity potential 0 or by the stream function 0, the assignment of the bound
vortex distribution leads respectively to the following boundary condition applied on the associated elements
on both sides of the blade [3]:

i l_+ = rf(x) or [--d]+ - rf dx (2.1)
cl n - dx

As the boundary condition is imposed on the presumed contour of the blade, the penetration of the fluid must
be admitted., In order that the boundary condition does not produce extra flux, the flux penetration through
each pair of associated elements is to be conservative, this implies:

[ d] + = 0 or iI _ 0 (2.2)

The solution of the inverse problem determines the flux penetrating through the associated boundary elements,
the camber line inclination correction M0 is given by:

O =0.5[tan- (.--)+ +tan- (V) -] (2.3)

Using this, the camber line rectification is performed iteratively. For the 2D incompressible potential flow, the
complex potential 0 + io is an analytical function of x + iy, the panel method using the multiform singularities
distribution described in [4] was used firstly to solve the inverse problem with success, this confirms that the
boundary problem is correctly formulated. Figure 3 shows the initial and the final shape of a blade designed with
adapted leading edge and with an appropriate loading distribution to prevent the boundary layer separation.

3. MERIDIONAL FLOW, S2 APPROACH.

In the first step, the vortex distribution is transformed into an axisymmetric one by spreading it in the
azimuthal direction, this situation is equivalent to the case where the number of blades in the rotor or in the
stator is assumed to be oo, the flow field becomes also axisymmetric and can be analyzed in a meridional plan.
Let C', e = 0, and s represent the body fitted curvilinear coordinates (Fig. 4), the meridional velocity is
represented by: U - Vli + V3 i43 = W 1i + WS3i, the continuity equation becomes:

1. avg"pU av U3i
- [O / + -a/p (31

where j represents the determinant of the modified metric tensor due to the flow channel striction produced by
the thickness of the blades. Indeed, N9 represents the volume of the elementary cube: (F3 x FI) ' F2, in the free
space i'k21 = gf/2 = r, and in the blade row space the thickness of the blade reduces the flow channel, if r69,
denotes the thickness measured in the peripheral direction, Nb the number of blades in the rotor or stator, the
modified element i22 of the metric tensor is determined by:

N49 simulating the elementary volume with striction in (3.1) is evaluated with 922. Using the stream function
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to represent the Bow field by imposing:

Ut= I 1U0 = U3 (3.2)

the equation (3.1) is satisfied automatically. The governing equation for 0 is obtained by writing V x = D2 ;2,
where l 2 represents the azimuthal component of V x 17, it is deduced from the hub to shroud equilibrium
condition, Let 

W2  w2 2H = EP 4 - = L, +n -P -W= -' = H + w (V, r)
p 2 p p 2 2

The momentum equation is:

Sp )otor

In fact, there is a pressure gradient in the azimuthal direction in the flow. space between blades, in the axial
symmetric S2 low where the number of blades is supposed infinite, this pressure gradient disappears and the
volume force fb/p due to the blades has to be added in the momentum equation. The loss scheme 12] related
to the plausible value of efficiency il for each streamline of the stage is added, this scheme suggests that the
dissipative force P,/p is related to the variation de Ver via 17:

l . I (n- 1) ] [IV" VV(Vr)]IV stator (3.4)

P (I - 1) (WY 1, •V(Vor) IWV rotor

P, = 0 as well as A = 0 are imposed in the free space. Figure 5 shows the relation between the kinetic moment
distribution in the blade row space and the circulation of the bound vortices produced by the blades. Let ro,
denote the circulation generated by the blade in the section cut by an axisymmetric stream surface 01 = ctc, the
kinetic moment (Ver),,.j generated by the bound vortices located between the leading edge and the abscissa m
can be represented by:

(Ver)m. = (v,),,. + ,(2w

Using (3.4) and adopting that aI/a 2 or aH/af2 being equal to -(Fd) 2 /p in the dissipative scheme, the
azimuthal component of the momentum equation leads to:

(F1 )2 = ,.. ! + V (3.6)

where W2 = Vsr + wr2 and V2 = Vor. The coordinates system e is chosen so that the constant C' lines are
iteratively replaced by the streamlines. The component following Es of the momentum equation represents the
hub to shroud equilibrium condition, which gives:

f Fr + W\/nfl1  (Fb) (Ird] I I rotor (3.7)

M V,/nI - p A {stator(37

Let i design the normal of the camber surface of the blade, we have:

i= F + n2E + n3 F

As W .I R in the rotor and R7 f in the stator, we have:

W2 or Vl=_(!IVI+2 V3)

and R I ., we have:
(Fb)2 r _3

n12 n
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Using (j.4),(3.6) and'the last 3 relations,(3.7).becomes:-

2 +, n I a(Ve r) ,,s(Vor)
V1  8,v nl2 a n2

(17-) # V [V1 (Va) Vsa(Ver)] (rotor (3.8)v(-1)-- a'- as  stator

In the free space, the component following F3 of the momentum equation leads directly to:
I 1 a_ (V,,) 8(Ver)

free space ¢gO= -- V2 I-- -- j (38b)

The dot product of the momentum equation with V in the stator and in the free space or with • in the rotor
leads to the following relations which serve to update the nodal values of H or 1:

free space eH {Vo
stator B =m 1)=e(v(.) (3.9a)

am

aa (Ve )rotor e W-iw (3.9b)

where 8( )/am denotes the meridional streamwise tangential derivative. Viting V x L' lF 2, we obtain
the governing equation of #:

8 s~ gss 8 , 8{& 8

- V9310) 91 0 =5 2  (3.10)

For the inverse problem, the distribution of Vor is assigned, using (3.9), flC2 is updated iteratively. Let the
camber surface of the blade be defined by 6 = f

2(f, C3) + cte, if the coordinate lines Cs = etc are updated to
the streamlines iteratively, C can be computed using the slip condition:

e de,(3.11)

Figure 5 shows the geometry of the blading of a multistage turbopump obtained by solving the inverse problem.
The CPU time on IBM 3090 in scalar mode is about 1 minute for the entire turbopump. The grid used for the
S2 computation is 300x16. Figure 6 shows the comparison of the centrifugal impellers designed with n I and
1 < 1 having the same level of total pressure gain.

Blade surface pressure evaluation. - Usually the $2 approach leads to the determination of the mean
velocity on both faces of the blade:

rotor W = [g,1 VIVI + 2913VIV$ + 933V3V3 + 9 22 (Vr + wr 2)2
1 /2 (3.12)stator V 92(V*r)"

Let AU denote the difference of the absolute velocities (V+ - V-) or the relative velocity (W+ - W-) on the
two faces of the blade, when the number of blades is finite, this difference is related to the local density of
bound vortex generated by the blade. In the S2 scheme, consider the blade section cut by a C3= etc surface,
the flux of bound vortices generated by the element 6£1 of the blade is determined by the flux of 6 through
the elementary surface (6S)3 F3 = V 6q-b 66 2

i, where 6f2 should be equal to 2w/N6. Using the Stokes relation
that implies the circulation produced by AU is equal to the fEux of the bound vortices we get the following
relation:

(&U)ik = 21 COSR 11v. ri42/2 , (3.13)
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where P denotes the local angle of the blade section with respect to the meridional plane. (3.12) and (3.13) are
used to compute surface velocity on both faces of the blades, then the pressure distribution by the S2 approach
can be deduced. (Fig. 9)

4. BLADE TO BLADE FLOW, S1 APPROACH.

The blade to blade flow confined in each axisymmetric stream sheet is analyzed in order to define the final
geometry for each section of the blade and to obtain the pressure distribution. At the beginning, the contour
of the blade is created from the camber line obtained from the S2 step with the assigned thickness distribution.
The conformal mapping (M, 6) ==* (X', X2 ):

rM dmX
1 = rO

, r (4.1)
z2 = ro(O - 0o)

transforms the blade to blade flow confined in an axisymmetric stream sheet into a 2D cascade flow in the
(x1 , X2) plane. The body fitted coordinate system constituted by the equipotential lines el = ete and the
streamlines e2 = cte of a fictive 2D flow around the cascade is created using the panel method 14). In this
system, the continuity equation becomes:

o pul ) + '-(pVgfU2)] = 0 (4.2)

where U represent the contravariant components of the absolute velocity V for the stator and relative velocity
IO for the rotor and D(X Z,(r)

V=D( 1, e 2) r.

where D( ,x'z2 )/D( 1 , 2) denotes the Jacobian, r represents the local thickness of the stream sheet. Introduc-
ing the stream function 0 with

(UI_ 1 a¢

U2 = -1 ao

(4.2) is satisfied. From the momentum equation, we can show that the free vortex of the absolute velocity
shedding from the preceeding blade row must be tangential to the axisymetric stream sheet, the governing
equation of the blade to blade flow stream function is deduced from this condition: for the relative flow around
the blades of the rotor, we have:

r~~~~~ 9 22(0)]118-e ): e2 ;
ag21Wt  ag12 W2  -wr d logr

+ 2V9" (4.4)

Boundary conditions for the inverse problem:

Flux conservation: (4. =50

Bound vorticity assigned: [Wde' - wr 2 d6] + = rdf (4.5)

The solution of the inverse problem leads to the determination of flux penetration on the blade contour, the
camber line inclination correction 60 is given by:

W2) + ('W2 -
= 0.5[tan-( " + tan-' \'-W-,1 (4.6)
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Figure 7 shows the-network (W1, 2) around a blade row for an impeller. Figure 8 shows the comparison
of the camber lines of the impeller obtained from the S2-approach and rectified by the S1 approach. Figure 9
shows the pressure distributions obtained from the S2 and S1 approaches. For the case of the turbopump, the
loading is optimised to avoid the cavitation. The results from the S2 and S1 computations are similar, but not
identical, the need of the S1 computation to obtain the final geometry definition of the blades is confirmed. For
one stream sheet, the CPU time on a IBM workstation RISC 6000/320 is about 40 minutes, or about 5 minutes
on IBM 3090 in scalar mode. The grid used is 150x16.

5. CONCLUSION.

The representation of the blades by the vortex distribution enables the formulation of the well-posed
inverse problem, and which leads to design the blading of a turbomachine. The two steps S2 - Si quasi-3D
approach has been applied on different axial and radial geometries. Several kinds of loading function have
been tried. The results show that the success of the blading design depends greatly on the meridional (Ver)
distribution assignment associated with the loss distribution. To optimise the design in order to avoid the
formation of the cavitation or the separation of the boundary layer in the design condition, when the loading
is not too high, experiences show that an adequate modification of the bound vortices distribution function f
may effectively lead to prevent the surface pressure to be lower than the cavitation level or to maintain the
adverse pressure gradient below the boundary layer separation criterion. The inverse problem procedure has
been elaborated to calculate the turbomachines in incompressible range, the research works are planning to
extend this method to make the transonic designs.
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Fig. 4. Baby fitted coordinate system C' 2 0, ~

. ..............

Meridional section of a multistage turbopump.

The blading obtained by the S2 inverse solution.

[ Fig. 5. The blading of a multistage turbopump.
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Fig. 6. Centrifugal impellers designed with Y7 I and 17 < 1
[ having the same level of total pressure gain.j
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ABSTRACT
A through-flow (hub-to..shroud) truly inverse method is proposed and

described in this paper. It uses as a design initial specification an imposition of mean
swirl, i.e., radius times mean tangential velocity, given throughout the meridional
section of the turbomachine. In the present implementation, it is assumed that the
fluid is inviscid, incompressible and irrotational at inlet and the blades are supposed to
have zero thickness. Only blade rows that impart to the fluid a constant work along the
span will be considered.

An application of this procedure to design the rotor of a mixed-flow pump will
be described in detail. The strategy used to find a suitable mean swirl distribution and
the other design inputs is also described. The final blade shape and pressure
distributions on the blade surface are presented, showing that it is possible to obtain
feasible designs using this technique. Another advantage of this technique is the fact
that it does not require large amounts of CPU time.

1-INTRODUCTION AND LITERATURE SURVEY
The large majority of pumps is designed by using very simple and rudimentary

one-dimensional considerations concerning the velocity triangles, considerations
which allow the calculation of the evolution of the blade angle along the passage, see
for example [1] and [2]. These methods are so easy that they can be carried out using
only hand calculations and simple graphical processes.

Although some pumps are still being calculated using hand calculations, the
above one-dimensional procedure can and has been programmed as computer codes
which are being used by the most important pump manufacturers. The results
obtained with these techniques are the better the more radial the blade passage is.
However, for mixed-flow pumps, the velocity triangles vary appreciably along the
span, so that the above methodology is not good enough. In order to take into account
this effect in some way, designers usually split the flow passage in several parts,
applying the above considerations to each one.

When the pump designs involve some responsibility, the above step is followed
by a verification using a direct code which is run with the geometry arrived at
previously. Before reaching the final design, several iterations following the above
steps are usually required.

This complete process can be time consuming, so that one is left wondering
whether it could be improved. One possible way to achieve this could be by using
inverse methods, enabling the achievement of the blade row layout in a more direct
form, in one single step. Among inverse methods, two-dimensional techniques are the
most frequently used and the ones that require less CPU time. These two-dimensional
inverse methods can be classified into two main groups, according to the
approximations used when looking for the solution to the blade design. The first sort of
approximations gives rise to blade-to-blade methods since the calculations are done in
the blade-to-blade plane. This kind of methods is popular among designers of' axial
turbomachinery, but it did not attract much attention among designers of radial

L J
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turbomachinery. The reason may be connected to the fact that the flow passages are
more complicated and there are significant changes in radius.

The other way of tackling the solution consists in working in the hub-to-
shroud plane (i.e., in the meridional plane), giving rise to what we could call hub-to-
shroud (or through-flow) methods. In this sort of approach the flow is supposed
axisymmetric, an approximation that can be interpreted as giving the mean flow
through the turbomachine. This sort of approach seems more popular among radial
turbomachinery designers. In fact, one can find examples of this kind of procedure as
far back as 1955, when reference [3) described some work applied to the redesign of a
centrifugal compressor, using a hub-to-shroud method. In this instance . the blade
shape was kept fixed and given as input, while the shroud contour was altered and
evolved as a result of the calculations. The centrifugal compressors described in [3]
were built and tested, the experimental results being presented in [4]. The
experimental results show that this technique produced significant improvements, in
the overall efficiency and peak pressure ratio.

A different strategy was followed in reference [5] which, again, describes the
application of an inverse technique to the design of centrifugal compressors.
Contrary to the previous example the meridional geometry (hub and shroud contours)
of the machine is supposed known and given as input. The other inputs consist of a
suitable normal blade thickness and the desired velocity loading (difference in
velocity across the blade) at hub, mid-span and shroud as a function of distance along
the camberline. As a result of the calculations the blade shape was obtained. This
paper presents some experimental evidence suggesting that the procedure gives
reliable results when the flow is attached.

The method proposed in the present work has got some similarities to that of [5]
in the sense that it is also a hub-to-shroud inverse technique that assumes as known
the meridional geometry and calculates the blade shape that will satisfy some flow-
field conditions, given as input to the procedure. The input design specification used

here is a mean swirl (radius times mean tangential velocity, rV0 ) distribution given
throughout the meridional section. This design specification is somewhat unusual, but
a suggestion in this direction can already be found in the work of Wu (see [6]) and it is
ideally suited to the design of radial turbomachinery as discussed in [7]. In fact, the
work of [7], which presents a three-dimensional inverse method using a mean swirl
specification, shows that the mean swirl specification is related to the way the work is
imparted to the fluid as it passes through the blade row. In other words, the mean swirl
can be related to the blade loading across the blades. Another reference that discusses
the use of a mean swirl imposition is [8], where the equations to be used in the present
work are derived. Nevertheless [8] does not present any practical examples of
application of the equations.

2-DESCRIPTION OF THE DESIGN METHOD
Throughout this work we will use a right-handed cylindrical polar coordinate

system defined by (r, 0 , z), where r is the radius, e the angular coordinate and z is the
axial distance. In addition, we will use an auxiliary coordinate Oc , defined by:

ot = 0 - f(r,z) (1)

where f(r,z) is the angular coordinate of a point on the blade camber surface. This
variable a can be interpreted as a sort of helical angular coordinate aligned with the
blade, so that when

2(2ax =m n (2)
B
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!with m an integer (m = ....-1, 0, 1, 2, 3,...) and B equal 'to the number of blades of thi
turbomachine, we are on a blade surface (eq. (2) describes the blade shape).

In the following we will use bold underlined characters for vectors and mean
values will be denoted with an overbar.

2.1 Velocity Flow Field.
Since it was intended to apply this method to design pumps, it was assumed that

the fluid was inviscid and incompressible and, for simplicity sake, the blade thickness
is not considered in this procedure.

In agreement with the through-flow approximation, the flow through the
turbomachine will be assumed axisymmetric even in the blade region. This mean
velocity field will be calculated using the streamfunction concept and the value of the
mean vorticity. Indeed, since the vorticity field is solenoidal, it can be written as the
cross product of two gradients of scalar functions. One of these scalar functions may
be ct according to the fact that all the vorticity is confined to the blades. In fact, if we
suppose the far upstream velocity is uniform (an approximation quite frequent), we
can say the flow is irrotational at inlet. Concentrating in designs that execute constant
work along the span, it is concluded that the flow must remain everywhere
irrotational according to Kelvin's theorem. So, if there is any vorticity at all, it musi be
bound to the blade surfaces, justifying the statement just made. The other scalar
function in the expression for the vorticity turns out to be the mean swirl as is shown

in [7]. Therefore, the expression for the mean vorticity, d is:

U = rV x vc (3)

and now that the mean vorticity is known, the corresponding velocity field can easily
be calculated. It is indeed known that the mean vorticity is the curl of the mean

velocity "V , or:

" =Vxy (4)

Equating the 0-component of eqs. (3) and (4) the following equation is
obtained:

W W. a VLV2 - af rVo_

az ar z ar ar az (5)

relating the velocity field to the blade shape, f, and the mean swirl rV0 . Besides this
equation, the velocity field must satisfy the continuity equation. In order to achieve
this we introduce the concept of a streamfunction defined by:

Yr = - z (6a)

= I Dr (6b)

L j
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iso that this definition satisfies identically the continuity equation for incompressible.

flow, i. e., V X = 0 . The actual value of v appearing in the definitions (6a) and (6b) is
going to be determined substituting (6a) and (6b) in eq. (5). In this way we arrive at:

r2  r ar &2 rLaz ar ar z (7)

For the resolution of this equation it is necessary to specify a complete set of
boundary conditions. The boundary condition to use along the endwalls (hub and
shroud) is the one that states that there is no flow through the solid walls. Using the
streamfunction concept, this fact is expressed as:

= Const. (8)

or, in other words, the hub and shroud must be streamlines of the flow.

Far upstream we know the mean velocity vector, V_*, since it is given as input.
Therefore we can write:

ras V.. ,.. (9)

where s is distance along the far upstream boundary and IL is the unitary vector
perpendicular to it. This expression enables us to calculate the values of v along the
far upstream boundary, using a simple numerical integration. At the far downstream
boundary a similar expression applies since the velocity there is uniform because the
flow is irrotational at inlet and the blade row is supposed to execute constant work
along the span. In this way the complete set of boundary conditions is obtained.

The partial differential equation (7) was solved using finite difference
techniques. As a typical mixed-flow pump has a meridional section with complicated
geometry bounded by curved boundaries (hub and shroud profiles) it was decided to
use a transformation of coordinates to body-fitted curvilinear coordinates (see [9]).
Since this coordinate system should be easy to generate and require little
computational time, it was decided to use an algebraic transformation. For this kind of
transformation of coordinates, mesh points are distributed along quasi-orthogonals
and quasi- streamlines. Fig. 2 shows the grid used in the calculations to be discussed
later on.

Eq. (7) was discretized using second-order accurate central difference
formulae, obtaining a nine-point difference star. The resulting finite difference
equations were solved by a relaxation method. In the present case, a Gauss-Seidel
relaxation scheme was used, implemented in conjunction with a multi-grid technique
in order to accelerate the convergence rate of the solution. A good description of
multi-grid methods can be found in [10], and, in fact, the relaxation subroutines used
in our program are a slightly modified version of the ones presented in [10].

2.2 Equation for the Determination of the Blade Shape.
After calculating the velocity field using the information presented in the

previous subsection, it is necessary to evaluate the blade geometry. That is done by
requiring the blade to be tangent to the velocity vector. This condition can be
expressed as:

W Va =0 (10)
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where. . is the local relative velocity, W_ = - L . Expanding eq. (10), the following
expression is obtained:

-f -af rV0V z + V(11) 20 (

where f is the angular coordinate of the blade and (o is the rotational speed of the blade

row. Vz and Vr are the mean axial and radial velocities, respectively.
Eq. (11) is a first-order partial differential equation with characteristic lines

coincident with the meridional projection of the streamlines. In order to integrate this
differential equation, some initial data must be specified along a line roughly
perpendicular to these characteristic lines and extending from hub to shroud. This
initial data on f will be called the stacking condition of the blade. In our method this
stacking condition is implemented by giving, as input, the values of the blade
coordinate f, along a quasi-orthogonal, for example, at the leading edge.

After the stacking condition is specified, we can integrate eq. (11), since all
the velocities that appear in it are known from the previous iteration. The integration
of eq, (11) was done using finite difference methods. More specifically, an Euler's
modified method (see [11]) was used. This is an implicit numerical scheme that has a
truncation error of second order in the mesh size and is consistent and stable.

2.3 Estimation of Blade Surface Pressures.
One result that is important in any design method is the values of pressure on

the suction and pressure surfaces of the blade, for judging whether the pressure
distribution is adequate or not. In order to estimate these values starting from the
axisymmetric solution it is necessary to calculate the blade surface velocities using the
mean values known. To do that we begin by determining the velocity jump across the
blades (W- W-) which is given by (see [7]):

W 2 (VrV x Vc ) x Vc (12)
B Vct.Vc •

where, for a pump, W.+ is the relative velocity at the pressure surface and W- is the
relative velocity at the suction surface. This expression is physically plausible as it
gives a jump in velocity which lies on the blade since it is normal to V ct (a vector itself
normal to the blade). In addition, we would expect the jump to be normal to the

vorticity vector, .- [VrT70 x V cx ], lying in the blade. Knowing the velocity jump and
B

assuming the velocity profile is linear between suction and pressure surfaces (a
frequent approximation in hub-to-shroud methods, see [12]) it is possible to estimate
the velocities at the suction and pressure surface.-. Indeed, their values are going to be
equal to the mean velocity (solution of the axisymmetric problem) plus or minus one-
half the velocity jump. Afterwards, using the fact that the flow is irrotational at inlet
and applying Bernoulli's equation, the expression for the difference in pressure
across the blades is obtained. The final expression is (see [7]):

P+-- = -- - .VrVo 0  (13)

L
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where p+ is the pressure at the pressure surface, p- the pressure at the suction[

surface and p is the fluid density. W is known from the velocity field calculation so
that all the terms in the right-hand side of eq. (13) are known, enabling the
estimation of the pressure loading across the blades.

2.4 Flowchart.
To end section 2, we would like to draw the attention of the reader to the fact

that the vorticity depends on the blade shape, f, which in its turn is an outcome of the
calculations. So, the calculations must be iterated until convergence is obtained. This
is done according to the following flowchart:

(i) input of initial data - specified values of rVe, definition of meridional section and
body-fitted curvilinear coordinate system and all the relevant parameters;
(ii) estimation of a first guess for f, assuming that the mean velocity is uniform along
the quasi-orthogonals;

(iii) using the input values of mean swirl, rV0 , and the values of blade shape, f, from
last iteration, calculate the mean velocity field (solution of eq. (7));
(iv) update the blade shape, f, by integration of eq. (11);
(v) if the solution is converged output the blade shape, f, and other relevant results.
Otherwise go back to step (iii) and initiate a new iteration.

This flowchart was implemented as a FORTRAN computer code and applied to
the design of the impeller of a mixed-flow pump.

3- DISCUSSION OF APPLICATION TO A MIXED-FLOW PUMP
In order to show the potentialities of the method, it was decided to apply it to

the design of a mixed-flow pump. The chosen pump was based on a real machine
which had as nominal conditions a value of 28 m for the head, H, a nominal volume
flow, Q, of 600m 3 /h and a rotational speed of 1450 r.p.m.. These values give a
nondimensional specific speed parameter equal to 0.919. The rotor has 8 blades and a
tip diameter equal to 320 mm. This value will be used to non-dimensionalize all the
linear dimensions and the velocities will be made nondimensional by using the
transport blade tip velocity, crtip (its value is 24.3 m/s).

The meridional geometry used in the calculations is based on an existing pump
(with minor alterations), designed by a Portuguese pump manufacturer using hand
calculations and graphical processes. The final meridional shape used is defined in
Fig. 1. A grid formed by 145 quasi-orthogonals and 57 quasi-streamlines was fitted to
this meridional section, there being in the blade region a total of 61x57 points. Fig. 2
shows every other line of the grid used. As can be seen, a region upstream and
downstream of the blade zone was considered in the calculations.

An important input to the present inverse method is the specification of mean

swirl, rV0 . As it is supposed that the pump accepts the flow with no swirl, the value of

rV0 along the entire leading edge is considered equal to zero. At the trailing edge the
value was also considered constant in order to obtain a design that executes constant

work along the span. The necessary value of rV0 at the trailing edge depends on the
work per unit mass of fluid desired for the rotor, which is a value determined by the
desired head and an assumed value of efficiency (in our case considered equal to 0.86).

LThe value of r 0 used at the trailing edge is 0.5411 aorsip .
L/
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Another restriction was imposed on the derivatives of the mean swirl at the
leading and trailing edges, namely, we forced there a zero derivative along the quasi-
streamlines. This was done in order to obtain a zero pressure loading at the trailing
edge (as is required by the Kutta-Joukowski condition), and at the leading edge. The
equivalence between a zero derivative of the mean swirl and zero pressure loading
can be seen from expression (13) which shows that the pressure loading depends on

the gradient of mean swirl, being zero where the gradient of rV0 is zero, as it is the
case at the leading and trailing edges.

This close equivalence between derivatives of mean swirl and pressure loading

across the blade was one of the factors used when choosing the input mean swirl, rV,
along the entire meridional section, and whose contours are presented in Fig. 3. The
other factor considered was the attempt to avoid a blade shape too twisted which would
be difficult to manufacture. These two factors were exactly the same guidelines
advanced and discussed in [7] when choosing the mean swirl for a completely
different turbomachine, a radial inflow turbine.

Recalling briefly the arguments advanced in [7] and which are sufficiently
general to apply to the present situation, it is evident from expression (13) that the
pressure blade loading is proportional to the product of the modulus of the relative

velocity and the value of the derivative of rV0 along the meridional projection of the
flow streamlines, or:

p - n= p I arV (14)

where s is distance along the meridional projection of the streamlines. In a well

designed machine, I -I does not vary abruptly and the streamlines have a direction
close to the quasi-streamlines. Therefore, eq. (14) implies that the pressure blade

loading is mainly influenced by the value of the derivative of rV0 along the quasi-
streamlines, which is a value known at the start of the calculations, and so can be
controlled. In this way, if it is desired to design a blade with a big loading near the

leading edge, then the derivatives of r'V0 along the quasi-streamlines should have
large values near the leading edge. In addition, if one wishes to obtain a pressure

loading with a smooth evolution, then the derivatives of rV6 should be watched with
special care, specifying them as smooth as possible and with a monotonic variation
from the leading to the trailing edge. From the point of view of the pressure loading
the most unfavourable situation is along the shroud, so that there the derivatives
should have a smooth variation.

The other argument that one should bear in mind when choosing the input
mean swir: schedule is the one connected with the amount of blade twist. In order to
clearly understand this argument it is important to rewrite eq. (11) along a
streamline, obtaining:

L j
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a
a

fa- fb = t dm = -- di (15)

b b

where a and b are two arbitrary points on the same streamline, f is the angular

coordinate of the blade, Vm is the mean velocity in the meridional plane and .m is the
distance along the meridional projection of the streamline. If one wishes to control
the total variation in the angular coordinate of the blade, fa - fb' it is convenient to
avoid high values for the expression under the integral sign in eq. (15). This can be

achieved if one specifies the value of rV0 so that WO has small values, or in other

words, if one specifies rV0 so that the value of V0 closely follows the local value of the
transport velocity, (or. This is the more important, the lower is the value of radius and

of the meridional velocity Vm . From the point of view of highly twisted blades, the most
critical streamsurface is the hub, not only because there the radius and meridional
velocity take the lower values in the machine, but also because the meridional flow
path is usually longer along the hub than anywhere else in the machine.

The next set of four figures is presented to demonstrate that the two above
points were taken into consideration. Indeed, Fig. 4 gives the evolution of the input

r V on the hub and the shroud. It is clearly seen that on the shroud the evolution of

rTV is quite gradual and smooth while at the hub the opposite happens.
Fig. 5 shows, on the same graph, the values of (r and the specified values of

V6 at the hub. Here it is evident that, on the hub, V6 has an evolution which is almost
parallel to (or, for most of the flow path and without much consideration in the

direction of obtaining smooth derivatives. This was done so that VV0 at the hub
presented small and approximately constant values along most of the blade, leading to
a reasonable overall change in the values of blade angular coordinate, f.

From the next figure, Fig. 6, it can be seen that the contrary happens on the

shroud, where V6 was chosen to have a smooth variation rather than following the
local value of blade speed, or. In fact, the main concern when specifying the mean
swirl at the shroud was to obtain an adequate pressure distribution and not to control
the overall variation in the blade angular coordinate, f.

The above ideas are corroborated by the next figure, Fig. 7, where the

derivatives of rV" along the quasi-streamlines for the hub and the shroud are
presented. As can be clearly seen, the derivatives at the shroud present a smooth
variation while the same does not apply at the hub, where a r are abrupt change of

the rN derivatives can be detected.

Using the close relationship between rNO derivatives and pressure loading one
can conclude that the present design presents a large loading near the leading edge at'
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the shroud streamsurface, while at the hub streamsurface the blade loading is more
evenly spread. However, one should point out that, at the hub, the derivative is zero
for approximately the last 15% of the meridional flow path. This indicates that there
will be a small pressure loading along the last portion of the blade at the hub,
suggesting that perhaps one could use a shorter flow path there. This idea would entail
an alteration of the trailing edge shape (using a trailing edge inclined to the axis,
instead of parallel) and so, was not pursued further.

The inverse computer code was run, using the input described above together
w,;th a stacking condition imposed at the trailing edge and which consists of a linear
variation of f between the value of 0.0 (at the hub) and 0.10 (at the shroud). -As a result
the blade shape described in the next figure was obtained. Since it is difficult to
visualize the blade three-dimensional geometry, we decided to present the blade
geometry in Fig. 8 as a view of two consecutive blades, as would be seen by an observer
looking in the direction of the impeller axis. The blade obtained seems typical of a
pump impeller and no particular problems are envisaged during its manufacture,
since it is not a highly twisted blade.

In the next plot, Fig. 9, it is presented the estimated pressure distribution on
hub and shroud, assuming a linear variation of the velocity from suction to pressure
surfaces and using the procedure already discussed in subsection 2.3. The pressure
coefficient, Cp , used in this plot is defined as:

Cp=  -1 (16)

where W..ref is a reference relative velocity, which is equal to 0.311Orti p in the present
case. Notice that the loading has a behaviour quite similar to the evolution of the

derivatives of r 0V along the quasi-streamlines, shown in Fig. 7, bearing out the

comments made above, concerning the close relationship between derivatives of rV0
and pressure loading. For example, it is seen that, at the hub, the pressure loading
varies more abruptly than at the shroud, and along the last 15% of the flow path a!
hub the pressure loading is zero as was already expected from the values of derivatives
of mean swirl. It should also be remarked that the distribution of pressure on the blade
surfaces at the hub is not ideal since its variation is not smooth and presents some
decelerations. However, the optimization of the pressure distribution would entail
changes in the meridional section of the machine, and so was not tried in this work.

One advantage of the present method lies in the fact that it is quite rapid,
requiring small amounts of CPU time. In fact, the present run required Im 39s of CPU
time in a VAX 3400 computer. Since it is computationaly so cheap, several different
input mean swirl distributions can be scanned quickly, enabling the choice of the
most appropriate mean swirl schedule.

4- CONCLUSIONS

A through-flow (hub-to-shroud) inverse method was proposed and
implemented as a computer code. In the present implementation the flow is assumed
incompressible, irrotational at inlet and the blade thickness was not considered
during the calculations. The necessary equations are presented and, as an example o" a
possible application, the inverse method was used to redesign the rotor of a mixed-flow
pump.

The present method uses as an input specification the value of mean swirl,

rV8 . This input specification was chosen using a reasoning similar to that used in [7].
This is remarkable, since the turbomachine designed in [7] was a radial-inflow
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iurbine, and indicates that the strategy- developed there is quite general, being able to
cope with radically different machines. Briefly, this strategy consists in using the
input mean swirl to control the pressure loading on the blades and the overall
variation in the angular coordinate of the -blade, f.

This work also shows that further research should be done in order to obtain
reasonable pressure distributions on the blade surfaces. In fact, the design presented
here has a pressure distribution on the hub which is not the ideal one. The
optimization of the pressure distribution will probably involve some changes in the
meridional section (hub and shroud contours).

One advantage of the present technique is the fact that it requires small
amounts of CPU time. So it is a convenient tool to scan quickly and inexpensively
several different input mean swirl distributions, in order to find the most appropriate
one.
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ABSTRACT
A new inverse inviscid method suitable for the design of rotating blade sections lying on an

arbitrary axisymmetric stream-surface with varying streamtube width is presented.
Given are the geometry of the axisymmetric stream-surface and the streamtube width

variation with meridional distance, the number of blades, the inlet flow conditions, the rotational
speed and the suction and pressure side velocity distributions as functions of the normalized arc-
length. The flow is considered irrotational in the absolute frame of reference and compressible. The
output of the computation is the blade section that satisfies the above data.

The method solves the flow equations on a (4)1,1l) potential function-streamfunction plane
for the velocity modulus, W and the flow angle 13; the blade section shape can then be obtained as
part of the physical plane geometry by integrating the flow angle distribution along streamlines. The
(0)1,1W) plane is defined so that the monotonic behaviour of the potential function is guaranteed,
even in cases with high peripheral velocities.

The method is validated on a rotating turbine case and used to design new blades. To obtain
a closed blade a set of closure conditions has been developed and refered in the paper.

LIST OF SYMBOLS
A1...A9 differential equation coefficients B constant number
m meridionai distance P flow angle
R outward unit vector (An) streamtube thickness
R radius 0 peripheral distance
U peripheral velocity 0)1 potential-type function
W relative velocity Wl1 stream function

INTRODUCTION
The design method which is presented in this paper is developed in order to use the results

of the meridional plane calculation and in particular the geometry of the axisymmetric flow
streamtubes. The design method is, then, applied in order to specify the blade section shape lying
on each axisymmetric stream-surface. The complete blade is constructed by u.:.king these blade
section shapes in the span-wise sence, as desired.

Blade design methods have already been developed in the past, for both incompressible and
compressible flows (refs [1]-[1 1]). However, most of them refer to plane cascade configurations only.
During recent years the topic of developing blade design methodologies has received particular
attention and important contributions have been published in this framework (refs [1]-[5]).

. The aim of the present effort was to develop an inverse inviscid method supporting the blade
optimization procedure described in reference [19] and capable to deal with the general case of an
arbitrary rotating cascade. The method follows the work of Schmidt 191 and Zanneti l n l concerning
the equations employed. However, it formulates the problem in a different way and employs
different numerical techniques as well as closure conditions, for reasons explained below. A first J
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F version of.the present method, using the classical potential function/stream-function definitions was

presented in reference [12]. Nevertheless, problems occured, when the method was appliedto high
speed rotating cascades because of the non-monotonic behaviour of the potential function. Recently,
a new version has been developed, capable of overcoming this problem. This improved version
which makes use of a more appropriate definition of the potential function/stream-function plane
(here refered as (Il,tJ)) is presented in the present paper.

POSITION OF THE PROBLEM AND DEVELOPMENT OF THE EQUATIONS
A schematic representation of a peripheral cascade is given in figure 1. The aim is to com-

pute a closed blade section, given the stream-surface geometry, the streamtube width variation with
the meridional distance (m), theapproximate number of blades (N), the inlet stagnation conditions
(PT1,TT1) and velocity vector (W1), the meridional position of the inlet stagnation point (ml), the
rotational speed (o) and the derived outlet flow angle (12). Assumed given, as well, are the suction
side velocity distribution and an approximate pressure side velocity distribution versus arc length.
The number of blades and the pressure side velocity distribution will change during the computation,
in order to obtain a closed profile, with the constraint to alter them as little as possible.

The flow is considered steady, inviscid, compressible subsonic and irrotational in the absolute
frame of reference.

The physical plane is presented in figure 2a. The equations written on an axially symmetric
system (m,O), are:

a) the continuity equation

- (p R (An) Win) +R(@ R (An) Wu) =0 (1)

b) the absolute irrotational flow equation
1 (RW + o R2) "Wm

-- =0 (2)
R m R 8

In the previous version of the method (ref.[12]) a transformation is performed to the (0,I4)

plane defined as

n x Vs Tl = @ (An) W (3)

Vi4) = (W + 3 x R) (4)

where V is the surface gradient operator and I the normal to the surface unit vector.

The difference d(1 along iso-T lines is equal to

d0 = (W + x R)d = Wds + oR 2dO (5)

This difference, however, is not always positive since there may exist certain high peripheral
speed cases for which d,4, locally takes negative values and, thus, (D is non-monotonic along
streamlines. This fact prohibits the mapping of the physical coordinate plane to the
potential/stream-function plane (the Jacobian of the transformation becomes zero) and thus no
arithmetical solution is possible. To overcome this inconveniency, a new transformed plane (01,411)
is defined in the following way

nxVs I= (An) W (6)
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F VsPl = W + U- (B/R) (7)]

where B is a vector parallel to the peripheral velocity U and its modulus B is constant. The

difference d41 along a streamline is, then, equal to

dM1 = (W+ xR-B/R)'ds-= Wds+((oR 2-B)dO (8)

It, is obvious that B can be selected is such a way that guaranties the positivity of the Jacobian of
the transformation from the physical to the (44,1IJ)-plane.

On the (4)1,t)-plane the equations of continuity and absolute irrotational flow can be
written in the form

2 2
A1(1nW)0jl¢ 1 + A2(1nW)0 1 + A3(lnW)q 1 + A4(inW)Wl, + A5(lnW)w +

A6(InW)q + A7(lnW) 1 w + A8(InW), 1 (lnW)4 + A9 0 (9)

-= F(WP,R,(An)) (10)

-= F2(W,P,R,(An)) (11)

The expressions for the coefficients Al to A9 are given in the reference [15]. In the above
equations c,1 and Vi are the independant variables, while the velocity modulus (W) and the flow
angle (3) are the dependent ones. Equations (10) and (11) for the flow angle are equivalent so
during the calculation one of them may be utilized.

THE BOUNDARY CONDITIONS ON THE (4)I,W)-PLANE
The transformed plane-(Dl,W) is presented in figure 2b. The flow quantities are known at

station (1), inlet, and the flow ang le at station (2), --tlet. T1e itegral nass fux Conservation
equation, the energy conservation equation along a meridional streamline and the isentropic flow
relations are used to calculate flow quantities at station (2). The integral mass flux equation is
written in the form

R1 cosp1 (An) 1
02W2 = QW2  (12)

R2 cosf (An)2

and the energy conservation equation along with the isentropic flow relations results to the following
expression

02 WI 12-UI 2 -u? 2 I /y-1
W-= (kA) 1 (13)

@I 2cpT1  2cpT 1

From these two equations the flow quantities (92,W2) may be calculated for a known flow angle f32.
The integral momentum equation can be written in the form

2TE
f Vds Wds + r, -- (RIVul-R 2Vu2) (14)

-N
L blade blade
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Fwhere 1
= R2 dO

blade

This equation relates the flow conditions at the inlet and the outlet with the circulation F which
depends on the velocity distributions along suction and pressure side, as well as, on the blade section
geometry. Integral F1, depending on the blade section geometry, is not a priori known. This explainr
one of the difficulties of the inverse methodology applied to arbitrary rotating cascades. Note that
Ti is zero only when the radius R is constant. During the computational procedure the integral Ti
is given an initial reasonable value and corrected accordingly, each time a blade section shape is
computed. In any case the value of r must be compatible with the imposed value of the outlet flow
angle P2, so that, if the suction side velocity distribution (being most sensitive) must be maintained,
the pressure side velocity distribution must be chosen to satisfy this value of F.

Considering, again, figure 2, periodic conditions are imposed along the ((AB),(EF)) and
((CD),(GH)) pairs of boundaries. W(I1) is specified along the suction and pressure side solid
boundaries and the corresponding value of 01 is calculated from the following relation

d1 = Wds + (wR2-B) dO (15)

Consequently, differences in potential from a station v to a station t may be calculated as

A4 Wds + J (oR2-B) dO (16)

Moreover, the way that the (1l,lJ)-plane was built assures that

IB=AOIF; A41C+ADIIF =D (17)

IA I E I B IG IC IG

During the computational procedure, the magnitudes of A4I B and AO I D are specified with
the constraint to take them large enough in order to reach at AE and DH (see'iigure 2b) uniform
conditions with sufficient accuracy. In this way, the position of the inlet and outlet of the calculation
domain in the physical plane (positions of AE and DH in figure 2a) is not yet specified.However,
using equation (4) along the peripheral direction one may get

dTlI = @(An)WcosPRdO (18)

so that the corresponding stream function differences are described by the following relation at the
inlet and the outlet stations

ATI' p(An)WcosP3RdO (19)
v f v

Along the inlet and outlet stations the flow is uniform with velocities and flow angles, W1, W2 and
131, k, respectively. Consequently, if WE = 1lF= WG = 'P1H = 0 is the streamfunction value characterizing

Lthe lower boundary, then the one characterizing the upper boundary, according to equation (19), is'
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A =27TR, 2TER 2  ID _1
A41 =@1Wlcos31 - (An),= e2W2cos[ 2- (An)2 =AJ (20)1

E N N H

The upper boundary being a streamline, WA = 1 B = W C=1 D*

THE NUMERICAL INTEGRATION OF THE EQUATIONS
Equations (9) and (10) or (11) are considered in the (4l,I)-plane, which in general is non-

orthogonal. If one considers suction and pressure side extensions of equal length in the periodic
zones (to facilitate the application of the periodicity conditions), then the computational domain
on the (44,l')-plane takes a trapezoidal form (see figure 2). A non uniform discretization of the
(4)1,1) boundary regions was found to be efficient, permitting the stretching of the grid lines in the
near-leading and near-trailing edge regions of the blade section, where the velocity gradients are
large. In view of the above, the resulting grid on the (4l,I)-plane, composed only of straight lines,
is generally skewed and stretched. In order to increase the generality of the solver and the accuracy
of the solution, avoiding at the same time complexities (such as patched grid techniques), an
additional body-fitted coordinate transformation is performed, which maps the (4,l,4)-plane to an
orthogonal (E, T)-plane with square cells (see figure 2).

The resulting equation on W in the (E,i)-plane is discretized by use of second-order accurate
finite-difference/ finite volume centered schemes. The discrete equation is, then, linearized,
transfering all non-linear terms ((lnW) 2, for example) to the right hand side (fixed point algorithm).
The resulting system of algebraic equations, which has a 9-diagonal banded, non-symmetric
characteristic matrix, is solved itettively using the MSIP (refs [13],[14]) method (incomplete L-U
approximate factorization procedure).

Once the velocity field is computed, the flow angle field is obtained integrating the ordinary
differential equations (10) or (11), along the iso-41 or the iso-l lines. A fourth order Runge-Kutta
method is used during this step. In practice, equation (11) is first integrated along the cascade mean
streamline and the computed 13-mean streamline values are used as boundary conditions for the
integration of equation (10) along the iso-Dl lines. This procedure involves only a tangential
derivation of the flow quantities along the blade and is, thus, more accurate. If a second order
normal derivation along the blade is used, then quadratic extrapolation procedures would be
required, decreasing the accuracy (mainly) in the sensitive leading edge region. The above procedure
provides the complete 3(4,1,1) field and, consequently, the blade coordinates.

THE COMPUTATIONAL ALGORITHM
A computational algorithm was constructed, outlined by the following steps (without

considering conditions for section closure, which will be examined later).
STEP 1 : The exit plane flow quantities are calculated through equations (12) and (13). A value for
the integral r1 is assumed and a velocity distribution for the pressure side compatible with the value
of the circulation r issued from equation (14) is established. The value of constant B is defined so
that 41 is monotonic along streamlines. The values of the potential differences A4I B and A0I1 D
are specified. C

STEP2 : A first approximation of the (0,ll)-plane contour is considered and the boundary
conditions for the velocity (through equations (16) and (19)) and the angle (utilizing plausible angle
distributions), are specified. The interior grid points of the region (BCGF) are established using
a simple linear procedure. In the upstream (ABFE) and downstream (CDHG) regions, the points
on the boundaries are chosen and the grid is constructed, so that periodic conditions can be checked
without interpolation. The complete velocity and flow angle fields are initialized making use of the
values at the boundaries, through a linear interpolation. An initial estimate of (An) and R for each
node is made, as well.
STEP 3 The coefficients Ai(i= 1,9) appearing in equation (9) are calculated.

[STEP 4 Equation (9) is solved for W(4,1lJ) using the numerical procedure and techniquej
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[described- in the previous section. At this point, an iterative procedure is performed involving the]
previous step, that is, updating the values of the coefficients Ai. This updating is performed, utilizing'
the values of the velocity field of the previous iteration.

At the end of the computational procedure involved in this step, the values of W at the
periodic boundaries will have been updated along with the complete velocity field.
STEP 5 : The flow angle field p(4I1,l) is computed after numerical integration of equations (10)
and/or (11) in the manner described in the previous section. During this procedure, new angle
values are computed at the boundaries, as well.
STEP 6 : The blade section shape 0=0(m) is computed using the following geometrical relations,
valid along a streamline

m= cosp3ds = r(s) (21)

sin3
0 = - ds = 0(s) (22)

JR

Utilizing these relations, the values of m and 0 are computed along streamlines- for the whole flow
field, as well. An interpolation procedure is used in order to estimate the new set of values R(m(s))
and An(m(s)), which will be used, along with the updated values of the angles.

The exit conditions are calculated at station (2), using the same procedure as in-STEP1. The
integral F is then computed and its new value is used to update r. The pressure side velocity
distribution is in turn modified in order to satisfy the new value of the circulation. The B constant
value is modified for the new geometry and velocity distribution. The boundaries and associated
conditions can then be established for a new (4)l,tl1)-plane. A new grid is thus generated on the
(4l,W)-plane, moving along T-lines and computing each time the value of t)1 corresponding to the
previously updated values of the velocity field.
STEP 7 : STEPS 3 to 6 are repeated until convergence is achieved.

As observed before, the blade section shape obtained from the above described
computational procedure is not necessarily closed.

RESULTS AND DISCUSSION
To validate the method stationary and rotating cascade reconstruction test cases were

selected. Exact cases were prefered where possible, while a direct solver was used to calculate the
"target", velocity distribution when the later was not analytically known. Inevitably, slight inaccuracies
in the results of the direct calculation method resulted in inaccuracies of the computed blade shape
by the inverse method. A complete outline of the test cases utilized for the validation of the method
are reported by Bonataki[151. Results for two analytical test cases and for a radial inflow turbine are
presented below.

In figure 3 the Gostelow[161 exact case (incompressible flow, compressor cascade) and in
figure 4 the Hobson[171 exact case (high Mach number, high turning angle, low pitch to chord ratio)
are presented to demonstrate the accuracy of the method. A radial inflow turbine case [181 (strong
variation of R(m), rotational, variation of An(m)) is presented in figure 5. In all three cases the
presented results include the initial blade shape, the corresponding suction and pressure side velocity
distribution and the blade shape provided by the inverse method. The typical number of grid points
utilized for the above calculations was (78x15) and the computing time needed for the complete
solution was 20 cpu seconds in an ALLIANT FX 80 computer.

As a next step the method was used for the design of new profiles. Starting from an arbitrary
suction and pressure side velocity distribution, a procedure was developed which in few iterations
provides a closed profile. This procedure is based on an extended investigation upon the parameters
which influences the blade section shape' 21'[51s , an investigation which has pointed out that the ratiol
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of pressure to suction side arc length and the pitch to chord ratio could control blade section
closure. It was also observed that the velocity distribution near the blade section edges influences
a small part of the blade shape near these edges, while the blade thickness is directly related to the
mean value of the velocity distributions along both the pressure and suction sides[12 . Using the
information provided by the above investigation new profiles were designed.

A rotating turbine cascade lying on a conical surface along with the "target" velocity
distribution is presented in figure 6.

In figure 7 a turbine blade is presented, which was used as the starting point for the design
of a thicker blade. This new blade was obtained by increasing the level of the suction and pressure
side velocity distributions while retaining the same inlet and outlet flow conditions. This particular
design is quite revealing, since the "target" velocity was obtained by modifying the original one in
such a way, so that the maximum velocity along the blade surfaces was not increased.

The blade section shape of a radial inflow turbine with speed of rotation is presented in
figure 8a along with the corresponding R(m) and An(m) distributions (figures 8c,8d) and "target"
velocity distribution (figure 8b). This is a typical case where the classical ('1,,IJ) plane definition fails
and this is demonstrated in figures 8e,8f where the (d14,lt)-plane is plotted for two different values
of the B parameter, B=0 (the classical 4) definition) and B= 1.1 (the modified definition). It is
evident that the modified definition suits better to the specific case.

CONCLUSIONS
A new inverse inviscid method for designing stationary or rotating, plane or axisymmetric

cascades was presented in this paper.
Compared with previous efforts, the new method may handle cascades rotating with high

speed and provide closed blade shapes in few external iterations.
The formulation and the numerics of the corresponding inverse method were discussed, in

order to distinguish it from similar methods and reveal its relative merits.
Finally, some calculation results were presented, to certify the accuracy and the capabilities

of the present effort.
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F A PC-BASED INVERSE DESIGN METHOD FOR RADIAL AND MIXED FLOW 1
TURBOMACHINERY

by
Ivar Helge Skoe
Kristion Sonjusvei 20
3600 Kongsberg,Norway

I. ABSTRACT

An Inverse Design Method suitable for radial and mixed flow turbomachinery is presented. The
codes is based on the 'Streamline Curvature Concept' and is therefore applicable for current PC's from
the 286/287- range.

In addition to the imposed aerodynamic constraints,
mechanical constraints are imposed during the design process to ensure that the resulting geometry
satisfies production considerations and that structural considerations are taken into account.

By the use of Bezier Curves in the geometric modelling, the same subroutine is used to prepare
input for both aero & structural files since it is important to ensure that the geometric data is identical
to both structural analysis and production.
To illustrate the method a Mixed Flow Turbine Design is shown.

CONTEt TS
I Abstract
2 Introduction
3 Analysis

3.1 Meridional flow
3.2. Blade to blade Flow
3.3. Implementation of the Inverse Procedure

3.3.1. The aerodynamic part
3.3.2. Structural Considerations
3.3.3. Geometric Constraints due to Production

4 Results
4.1. A Mixed Flow Turbine
4.2. CPU times

5. References
6. Acknowledgements
7. Figures

2. INTRODUCTION

The objective of this paper is to present an inverse design method which can be used on
ordinary PC's.
Since the conventional design process for centrifugal and mixed flow turbomachines is an iterative one,

with successive changes to the input geometry subjected to the flow analysis , it is evident that the aero-
design process takes considerable time. It can therefore be tempting to apply inverse design principles
to ensure that , at the end of a computational task, the resulting geometry satisfies predetermined aero-
restraints.
The method described is an 'engineering' approach to the inverse design problem where both[ aerodynamic and mechanical criteria are imposed. |
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For rotors of radial and nxed flow design, the shroud line aerodynamics is considered the most
critical aerodynamically. In the present method the shroud line aerodynamics are 'imposed' and the
three-dimensional geometry is evaluated under mechanical constraints dictated by structural and
production considerations.

A novel exducer geometry, featuring 'Balanced Work Extraction' is part of the design
procedure for RadialMixed Flow Turbines.

The complete 3-D Geometry of the rotor is generated in the Inverse Design method. Through
extensive use of 'Bezier Curves' in the geometric modelling the same subroutine performs the
'meshing' for the FEM-analysis and prepares the input files for the structural analysis in NASTRAN
FEM-system, as we!l as the geometry definition for production.

3. ANALYSIS

The flow equations, in the form presented here, is a Quasi 3-D ,inviscid approach to the Navier Stokes
Equations. The viscous effect, however is included in an approximate way by including the Entropy
term in the equations. The spanwise and streamwise effect of losses are simulated by applying a
Polytropic Efficiency, which is allowed to vary spanwise.

The basis of the quasi-three- dimensional flow analysis is the division of the flow field into two
types of two-dimensional surfaces, as shown in Fig.l, from Ref. 1. The S2 surface, which describes an
'average' meridional flow is governed by the meridional flow equations is described below,while the
S1, or blade to blade flow is handled in chapter 3.2.
The terminology is 'commonpractice' in turbomachinery, illustrated on Fig. 2 & 3.

3.1 THE MERIDIONAL FLOW

The meridional Equilibrium Equations has been applied to Hydraulic Francis Turbine Design since early
in this century. Applied to Axial Flow Turbomachinery, the equations are termed The Radial
Equilibrium Equations. These two forms of the Equations are treated in numerous reports from the last
several decades, and for detailed information they are referred to the in Ref. 1,2 & 3.

In the following chapter a short description of the equations is given, explaining how they are
integrated into the procedure.

The meridional flow equation takes the following form

d-+F* -+G=O
di

where the two terms F and G contain thermodynamic and geometric elements which are dependent on
the flow solution itself. Hence an iterative solution is required.If the 1-direction Fig. 2 is normal to the
meridional streamline in a vaneless region the terms in Eq. (1) simplifies to:

F=2 1 dr=- -*-(2)
R, CPdl

V d(R*V) m 1
G=2* ± 2*-H- + *(*H-(3)

R idl ICP T di
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F
Since , in the general case, the meridional streamline location is unknown, it is convenient to fix most
of the calculation 'stations' as 'quasiorthogonals' for the iterative flow calculation process, (Ref.3.)
while for the rotor trailing edge the code is required to handle curved calculation station.

The solution of Eg. I is performed by Direct Integration

M=exp-{fFd/l [V.,-fG*exp-{jF *d] (4 ,a)

.a -iF, e-, fJGd eJ.F'ddl (4,b)

where the integration is performed from hub to the streamlin in question.
The constant of integration is set by the continuity equation:

shmud

TV= f 2*7t*R*V.*cos()*p*r*Cd*dl ()
hMb

where the angle (Fig.2)

8= -Y(6)

the blade blockage (when inside bladerows)

-r=2*ir *R-Zb*te (7)

and the Discharge Coefficient Cd is basically sized to take care of boundary layer displacements

effects

3.2. BLADE TO BLADE FLOW

The aerodynamic blade loading can be derived by relating the change of moment of momentum for
a flow-filament to the torque exerted by the pressure difference blade-to-blade (Fig.2)

dp*Z,*dn*dm*R = da * d(R,*V) (8)
din

The filament massflow can be expressed as

dW=2 *7r *R* V.* p *dn (9)

If the assumption (to be revised below) is made,that the flow is incompressible and linear blade-to-
blade, the following expression relates the velocity difference to the pressure difference

(I=! *p *(W!-WV)=2*p*W*AW (10)
2
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By introducing this expression together with equation (9) into equation (8), an approximate expression

for the suction side velocity can be formulated

- - , =_1 d(R*v) (*l)WV+A&W=WT
Z 1w dm

By means of the relative flow angle definition

P =arccos(V,/W) (12)

equation (11) can be rearranged to give an approximate expression for the Suction Side Velocity

wsx= - os (-/+)- 1. cos(p) d(R Vu) (13)

In our iterative design procedure we use the above mentioned linear approximation only in the first

iteration. For the subsequent iterations

W =W=+A1*6 2 h+B1*enh (14)

and the two constants, Al & BI, are evaluated so that, with compressibility Eq.(8)is satisfied. By
integrating the massflow density blade-to-blade input for Eq. (5) is evaluated and the difference between
the SI flow surface, and the blade surface is determined.

The above formulation is similar to the SFC-concept (Stream-Function- Coordinate)
method described by Professor G.S.Dulikavich in Ref.5, however, less ambiguous due to the intended
use of a PC. For the blade to blade solution
there are three areas of major concern, namely the blade inlet, the blade exit, and splitter if present.
Blade Inlet
Since for radial and mixed flow turbomachinery we are normally dealing with high solidity blades in
the rotors a 'channel flow' approach gives reasonable results (Ref. I & 4). For our Mixed flow turbine
we selected an 'optimum' inlet blade angle by setting the 'slipfactor'=.85 in the following relation

P,.,=arctan(1 _ 1 - *tan(p))
IL (15)

where 4=L--!! is Flow Coefficient, p='slippfactorl
U

Blade Exit
In our mixed flow turbine rotor, where the flow is close to axial, the 'Cutta Condition' implies

(when transonic effects are excluded) that the aerodynamic bladeloading is zero at the trailing edge,
which is reflected by introducing zero gradient in the imposed (R*V,) at the trailing edge. The
difference between the S1 and blade average pitch must be corrected according to some deviation
'rules' based on experimental evidence.
Splitter blades

In our d.sign method we must be capable of determining the position of rotor splitter blades
for an imposed optimised suction side velocity.It should be evident from the above eqation (13) that
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the splitter blade must be 'unloaded' to leave a smooth suction side velocity on the neighbouring
'mainblade'.

3.3. FORMULATION OF THE INVERSE DESIGN PROCEDURE.

A practical turbomachine design system must meet both
-aerodynamic
-structural (stress,vibration,cyclic load e.t.c)
-and geometric constraints imposed by the method of producing.

Since none of these requirements are secondary, they are handled in three different chapters.

3.3.1. THE AERO-PART OF THE INVERSE DESIGN.

In the aero-design of turbomachines the shroudline suction side relative velocity is considered
the most critical part of the flowpath, regarding the boundary layer behaviour . This suction side
velocity can be controlled by the distribution of the following parameters.
Since the suction side velocity cannot be 'dictated' for the whole 3-D geometry for a practical rotor

d(R*V.)

design (Ref.6) the rest of the flowpath is defined from mechanical constraints. Also the Rotor Exit Flow
Quality is imposed to enhance the suceeding diffusor performance.
Based on the anticipated gradient in efficiency from hub to shroud, the required temperature gradient
at rotor exit is determined by Eq. (16)
With the assumption of Axisymetric Stream Surfaces (Chapter 3)

P___, _ =[ T_,,,, ("- (16)

the Euler turbomachinery equation is applied along the meridional streamline

2fi* T, , =o*[R*V...-* netj (17)

The novel exducer configuration with slanted trailing edge shown on Fig.3 & 8, allows controlled
rotor exit bladeangles without violating structural considerations.
To ensure the performance (total-to-static) above conventional turbine designs a conical diffusor with

'centerbody' is required (Fig.5) since strong 'counterswirl' near hub results from the design.

The Inverse Design Procedure to be implemented consists of the following steps:
a) Define a 'first guess' meridional flowpath 'Grid'.
b) From estimated efficiency the streamwise distribution of (R*V,) is determined including rotor

exit (Equation (16)&(17).
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c) Impose a Smooth Meridional Velocity field in the grid. The value of the imposed meridional
velocity along the shroud, together with the the (R*V.) distribution, determine the 'Critical' shroudline
suction side velocity according to Eq .(13)

d) Evaluate the F- and G- terms of equation 2 & 3.
e) Integrate equation (1) (Eq.(4)), with the constant of integration is set by the imposed shroud

meridional velocity.
f) Integrate RHS of Equation (5) with the velocity resulting from e) above. Correct ,with

a relaxation factor,the meridional streamline position according to the integrated massflow fraction. The
lack of continuity dictates how the meridional flowpath is altered during the iterations. In other words,
the rotor hub, (or shroud) is allowed to 'migrate' during the convergence to satisfy the continuity
equation (ultimately).
g)Impose the 'Mechanical Constraints' (To be defined in
section 3.3.2 & 3.3.3 below) .The characteristics of the blade depends on the S1 surface which is
determined by integrating the relative flow angle:

os iftpdnf o*R-V. = (18)
R R=J( V. R*Vm

The S1 surface /blade surface relations were mentioned under 3.2 above. The polar angle derivative
along the integration path for Eq 1 is required to evaluate the Bladeforce Term.

h) Special attention is required for the rotor exit, where the air angle is dictated from the
requirement of a prescribed (R*V.) , according to Eq 16 & 17, due to the imposed total pressure.
Depending on the mechanical restriction the trailing edge may have to 'migrate' during the design
process.

i) With revised flowfield information the F- and G- terms in eq.1 is updated, and the
computational procedure returns to e) above.
This process continues until some criterion of convergence is satisfied.

3.3.2. STRUCTURAL CONSIDERATIONS

The total structural life criteria cannot be analyzed during a PC- based inverse design procedure, since
rather complex FEM- analysis is required.To ensure that the 'first guess' of the aero-defined blade
respect some basic stress criteria (Creep e.t.c) a simple 2-D stress model can be performed during the
inverse design. When second order terms are neglected the following equations applies for the
maximum radial Stress near hub

s1 ow M , 1 (19)
am= f 8 ,cdr +I- -*-*t, .(

t80101_, 2

where the centrifugal force and bending to be integrated (Eq. 20 & 21) are

8cf pM ,t*,e* a2*R (20)
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Hub
M.,,= f 8Cf*R*(0O6&b*d (21)

Shmrud

and the second mnuent of inertia of the hub section (Eq. 22) is

1 3 (22)

This analysis require little additional code and can be performd during the inverse design procedure.
For our Mixed Flow turbine rotor geometry,this integration was performed in 'Section B-B' and in
'Section A-A' to determine a tangential blade thicknes ratio compatible with the materials creep life
data . Equation (19) can be solved 'inversely' and the resulting 'constant creeplife blade' results in a
'Eifel Tower' blade shapes of the type seen in Fig.8. For critical designs like this radial turbine and
centrifugal compressor of Ref.11, is vital that the structural analysis is performad with the same
geometry as the geometry defined for production.The geometry definition of radial and mixed flow
rotors is a typical case for 'special purpose' software , and it is logical that the aerodesigner prepare
the complete geometry ddefnition files for the FEM-program input, as illustrated on Fig.8. These
geomtries are defined in the same subroutine with the constants determined in the designprosess. In
subsequent structural analysis temperature, heat transfer cefficient e.t.c must be added.

3.3.3. GEOMETRIC CONSTRAINTS DUE TO PRODUCTION.
It is important that the 3-D blade geometry which is output of the inverse design is compatible with
an available/economic production method. The two manufacturing methods which is common for radial
and mixed flow turbomachines is Flank Milling and Casting.

For the Production of Castings, there is a close connection between the requested thickness
distribution, material quality requirement and scrapprate. Due to this the relative thickness ratio for the
tip vary with size .As a consequence the optimum bladenumber reduces, and the meridional flowpath
length increase with reduced size to conserve the aerodynamic blade loading, Eq .8, 13, Fig. 9. Ref.14

The 'Cold Rig' version of the mixed Flow Turbine in question has been 'Flank milled' in a
5-Axis Controlled Milling Machine. Furter 'Flank milling' is a candidate for the production of the
forms for 'Lost Vax' casting process and it is a good method for high performance Centrifugal
compressors with transonic inducers.

The 'Flank Milling' production process is illustrated on Fig. 3, where it can be shown that the
production process will impose mechanical constraints on the blade geometry in the direction of the
'Cutter Centerline'.
The blade surface definition, and the machining process is illustrated on Fig.3,Section C-C, which is
seen normal to the cutter centerline for one particular position along the 'Cutter Path'.

Since ,in the general case, a rotor blade is 'twisted' fiom hub to shroud, it is evident that the cutter
direction (In woorkpice Coordinates) are different at shroud and 'near hub'. As a consequence, the
contact line of the cutter spans an angle from hub to shroud and the blade surface are 'undercut'
compared to the stright line a) to b). The deviation from this generatix half way from hub to shroud
is close to
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F
8"-Rcuf r *[1-coSC.5*C Pub-PSh.)1 (23)

where the bladeangles is taken in a plane normal to the Cutter Centerline.
For the Mixed flow Turbine, and for compressors as shown on Fig.9 & 10( Ref.l 1), undercutt can be
comnpensated for when defining the blade for FEM-analysis by using a slightly different 'Cutter 'Path'
for the geometry definition as compared to the 'Cutter Path' defined for machining.
The rather obvious requirement that a practical cutter has to pass between the blades to be machined
does put restraints on the selectioon of number of blades and possition of splitters.

4. RESULT OF THE INVERSE DESIGN

4.1. A Mixed Flow Turbine

The presented design method has been utilized, during the development period, for several
turbomachines from the Centrifugal Compressor for an 'Ultra Small Jet Engine' in 1988,Ref. 14, Fig
9, to the Radial Inflow Turbine currently in the design phase Fig.8.
The mixed flow turbine used to illustrate the inverse design method, Figs. 3 to 7, was designed for a
Total to Static Pressure ratio of 2.05.
For the particular spool a high rpm was required due to the Compressor Efficiency , size, and cost.
Applying typical 'turbocharger turbine geometry' would result in low total-to-static efficiency (Ref. 8
& 12), consequently a mixed flow turbine was designed for this application. Fig.5 shows the turbine
rig which has been designed by ARTI in Praha, and Fig. 4 shows a photo of the turbine rig rotor,
'Flank Milled' at ARTI. The rig is currently in the manufacturing process and 'Cold Rig' tests are
scheduled later this year.
Due to the combination of conical flowpath and 'almost' radial element blades, some freedom exist

in the selection of rotor inlet tipspeed and 'Design Charts' for hydraulic Fransis Turbines could to a
certain degree be utilized,
A dosign procedure as described in 3.3.1 with the restriction of 'Flank Milling' was performed with
different combination of bladenumber and splitterlocation. The final design geometry shows the
meridionalvelocity profiles in Fig 5.3 and the relative machnumbers in Fig 5.4. By imposing a 'kink'
in the R*V, distribution in the splitter blade trailing edge region, a quite uniform suction side
machnumber is obtainwd on the whole mainblade, and the deceleration near the trailing edge suction
side should give low boundary layer growth (Ref.13).
Since both meridional curvature and aerodynamic blade loading are drastically lower than for High
Pressure Ratio Radial Inflow Turbines the resulting 3-D effects, which is not taken care of in the quasi-
3-D formulation, should be moderate. It is, however evident that a reliable design procedure for this
type of turbines needs feedback from the 'real flow effect' regarding the deviation and loss
characteristics. Since the basic Quasi 3-D procedure when properly 'calibrated' for efficiency and
deviation, predict the static pressure along a compressor shroud as shown on Fig. 11, the same procedure
should apply for the lightly loaded turbine.

4.2. Computational Times:
The Computer code described has been used on computers ranging Homecomputer (Fig 1988) through
286/287 (for the Mixed Flow Turbine 90) to 486 type (Radial Inflow Turbine Fig .22 ,1991). It is
difficult to a.ive 'honest' figures for the performance of the code for several reasons
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-The code is seldom started from 'scratch'. Based on previous experience a tentative streamline
pattern and a tentative meridional velocity level can be estimated as a 'first guess'. This reduces the
time for obtaining satisfactory convergence drastically.
-The grid required varies with the type of task.
-The performance depends on how the computer is configured.
-An en2ineer seldom runs a program to the convergence level which a mathemathician would.

Comparison of several codes for turbomachinery flow analysis are given in Ref. l,b) Since both
grid and computers vary a direct comparison is difficult. Since the basic characteristic of a streamline
is that both the first and second derivative (Slope & Curvature) is included in the information it is
logical that the grid can be quite coarsh for SC-procedure.

It would be a task for ICIDE to define a list of 2-D and 3-D turbomachinery geometries which
could be used to evaluate different methods, since several factors in addition to relaxation , grid size
and number of iterations affects the accuracy and time used.

For the 286/287 Mixed Flow Turbine Fig. 4 & 5,a total of 33 Meridional 'stations' vere used.
The first 10 'stations' were used in the nozzles, which vere also inversly designed. In the rest of the
flowpath, 23 additional 'stations' vere used , and 9 meridional streamlines vere used including hub &
shroud. This task took typically 50 minutes on the 286/287 Laptop.

For the design of a axial/radial diffuser similar to that on Fig. 5 a smaller grid had to be used
to include a simple boundary layer code (Ref. 13). For that design (not shown in this report) a optimum
boundary layer shape factor vere the basis for the geometry definition.

Currently the code is running under ,he Microsoft Professional Development System
7.1.(QuickBASIC Extended, which is a very convenient development environment). This allows the
DOS-barriere of 640 K to be broken by using EXTENDED or EXPANDED memory. In this case a
simple 2-D boundary layer integration procedure (Ref.13) can be included in the present code together
with a (35*9) meridional grid, at the 'cost' of a speed reduction of some 50% compared to the 486
'640K-DOS speed',and typical CPU is 12 minutes for a Turbine shown on Fig.8.
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OPTIMAL DESIGN OF SOLIDIFICATION PROCESSES

Jonathan A. Dantzig and Daniel A. Tortorelli

Department of Mechanical and Industrial Engineering, University of Illinois, Urbana, Illinois 61801 USA

1: INTRODUCTION

An optimal design algorithm is presented for the analysis of general solidification processes, and is demon-
strated for the growth of GaAs crystals in a Bridgman furnace. The system is optimal in the sense that the
prespecified temperature distribution in the solidifying materials is obtained to maximize product quality. The op-
timization uses traditional numerical prograniming techniques which require the evaluation of cost and constraint
functions and their sensitivities. The finite element method is incorporated to analyze the crystal solidification
problem, evaluate the cost and constraint functions, and compute the sensitivities. These techniques are demon-
strated in the crystal growth application by determining an optimal furnace wall temperature distribution to obtain
the desired temperature profile in the crystal, and hence to maximize the crystal's quality. A similar problem is
investigated by Dantzig and Chao [1], however their approach does not utilize numerical optimization techniques.

Several numerical optimization algorithms are studied to determine the proper convergence criteria, effective
one-dimensional search strategies, appropriate forms of the cost and constraint functions, etc. In particular, we
incorporate the conjugate gradient and Quasi-Newton methods for unconstrained problems[2]. The efficiency and
effectiveness of each algorithm is presented in the example problem.

We have chosen to adapt an existing commercially available finite element program, FIDAP [3], to compute
of the sensitivities, rather than develop a new code. Thus, we are in position to investigate larger and more
complicated problems in the future without significant code development. The explicit sensitivities are computed
analytically by the adjoint technique[4], which has been applied to nonlinear transient conduction problems by
Tortorelli et. al. [5]. Large computational savings and accurate calculations are realized by utilizing an explicit
approach as opposed to the costly and sometimes unreliable finite difference method [5, 6].

In the following section, a brief outline of the conjugate gradient and quasi-Newton methods for unconstrained
optimization are presented. In section 3, the adjoint sensitivity method is reviewed and presented in a specialized
form appropriate to the processing problem. An example problem is presented in the last section.
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2: METHODS OF ANALYSIS

2.1 Optimization Algorithms

Vanderplaats [2] presents an excellent exposition of the algorithms which have been developed to resolve
design optimization problems. The search method algorithms for unconstrained problems are characterized by
sequential searches in the design space to reduce the value of the objective function, G. Beginning at a specified
initial point in design space b, a line search is performed to find the minimum value of the objective in a
search direction, S. Once the minimum is found in this direction, the present design is updated and a new search
direction is chosen. This process is repeated until the design converges to its minimum objective function value.
In this section we will briefly outline three search methods for unconstrained optimization. The methods are
distinguished by the mmaner in which the sequence of search directions is determined.

Search methods which utilize derivatives of the objective function tend to be more efficient (i. e. will require
fewer iterations) than zero-order methods. This is true because the gradients suggest the direction one should
move in design space to reduce the value of the objective function. The sensitivity analyses, described in the
next section, provide this gradient information at relatively little additional cost beyond that which is required to
analyze the process and evaluate the objective function. Accordingly, the discussion here is limited to these first-
order gradient-based methods, specifically, the methods of steepest decent, Fletcher- Reeves conjugate gradient,
and the Quasi-Newton are described. The methods differ in the way that the search directions are determined.

Line searches are performed for all of the above-described algorithms. We are using a variant of Brent's
Method for this purpose(71. In this technique, the objective function is assumed to vary quadratically with the
scalar ct along the vector in design space given by b + aS. Thus, the problem becomes one of finding the value
of a corresponding to the minimum G. If G were truly quadratic in a, then a combination of three function
evaluations or derivatives with respect to a would suffice to obtain the minimum. In practice, G is generally
not quadratic in a, hence this technique requires repeated evaluations of G and its derivatives to determine the
minimum. In some cases, the parabolic interpolation can diverge. To circumvent this problem, Brent's Method
uses interval sectioning when divergence of the parabolic interpolation is detected.

Once the minimum for the given search direction is found, a new direction must be chosen. The most
simplistic algorithm uses the gradient to determine the new search direction, i. e.

s=-VG (I)

This "Method of Steepest Descent" has been shown to be inefficient (2]. Better algorithms utilize information
about previously searched directions to construct the next search vector. In the Fletcher-Reeves conjugate gradient
method, the new search direction is given by

Si + VG(bi-1)J (2)

where b is the design vector at the beginning of the 1h line search. Such a selection of the S ensures that
the search directions are Q-orthogonal. After several steps, it is possible that searching in direction Si will not
improve the objective, and the process is then re- initialized with Equation (1).

In the Quasi-Newton methods for unconstrained minimization, we consider a Taylor series expansion of G
aboui the present design, bo.

G(b) : G(bo) + VG. 6b + 16brH 6b (3)
2
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where H is the Hessian matrix, and 6b = b - bo is the new search direction. Differentiating this equation with
respect to the design variation and setting the result to zero (for the miffimum),yields

6b = -H(bo)"'VG(bo) (4)

Rather than compute the Hessian inverse, which- is usually dif'.;cult because it contains second-order sensitivity
information, we construct a~series ~of apjproximatidnsto H-1 from

where

DI - (6)

Thi aproimaiontotheHesia iners (quaton (5)) is then used with Equation (4) to determine the

approprinte design ilicrement,

A-more detailed disctission-of these,;algorithmis-gvn~l Refcdrenc42j. Clearly, the use of these algorithms
requires that the scnsitivities be computed accurately, and because the y are computed many times (once per
design iteration),they-must also-be cqmpitttedcICirnly.. in the next setion, an e'fficient'algorithm is described
for obtaining the-sensitivitics .after ana.iyzingte-origina[ problem.

2.2 Explicit Design.Sensitivity Analysis u~ing an-Adjoint Method-

Tortorcli, et al.[5] described a Lagrange multiplier method for formulating the adjoint d-esign sensitivities
for nonlinear transient thermal systems. The variation of a general design fimctional may be expressed in explicit
form with respect to variations in the prescribed boundary conditions. However, the design functional depends
on these explicit quantities and implicitly on the L-nmperature fl.-ld. To obtain the explicit sensitivities, the implicit
dependency on the temperature field must be resolved.

The design functional is expressed as

G(b) =ff(T)dV + J9 (', b)dA :(7)
B

where the temperature T(x,b) represents the implicit response fields in G, b is the- vector of drsign parameters,
and the position vector is denoted by x. T7he design vector wililbe used to dofine he boundary conditions, which
ultimately control the values of all the response quantities and G. All quantities am~ defined in te raegion B? or on
the bounding surface OB (with outward unit-normal vector n), and ae assumed to-be smooth enough to justify
the operations performed. Furthermore, differentiability of G with respect to the design is assumed.

The response quantities are implicitly defined by the de-sign and the fiollowing mixed Noundary value problem

V-q+r=O irtB (8)

with boundary conditions

T = T on A7 ,
q3- qP(T, b) on A, (9)

q 3 = h(T, b)(T - T,,,(b)) on A
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F
where q(x, b) is the heat flux vector, r(T, g, x, b) represents the temperature- and temperature gradient-dependent
internal heat generation, g(x, b) _ VT(x, b) is the temperature gradient, q' - q n is the surface heat flux,
and h(T, b) is a convective transport coefficient between the surface of the domain and the ambient temperature,
Too(b). AT, Aq and Ah are complementary subsurfaces of OB and correspond to surfaces with prescribed tempera-
ture 7P, prescribed flux qP, and prescribed convective boundary conditions, respectively. Note that the prescribed
flux, heat transfer coefficient and ambient temperature distribution are all functions of the design vector, b, and
the temperature to allow modeling of nonlinear heat flux and convective loads, as well as radiation. Note also
that the internal heat generation term may be used to model convective transport terms when fluid flow is present.
To complete the representation, a constitutive relation is introduced for the heat flux where 4 is a general function
of the position, temperature and temperature gradient,

q = 4(x, T, g) (10)

We will follow a finite element formulation, where Equation (8) is written in weak form and the boundary
conditions in Equation (9) enter after integrating by parts and applying the divergence theorem.[8] First define
the weighted residual, R, as

R(T,b,A) {VA.q- A-dV + AqPdA + JAh(T- To)dA (11)

B A, Ah

where A is a weighting function which will described in more detail below. We use a displacement approach, in
which the only dependent field is the temperature. Thus, Equations (9) and (10) are strictly enforced, and A = 0
on AT. When R is equal to zero (for all admissable A) then Equation (8) is satisfied.

In general, the nonlinear nature of the problem will require that Newton-Raphson iteration be performed to
find the zero of the residual. We introduce a truncated Taylor series expansion to update the temperature field
from 74 at iteration I to 7+1 at iteration 1+1:

R t +1 ; R(T',b,A) + {OR(TlbA) AT = 0 (12)

where AT = TI+' - T t and

OR(Tt, b,A)OT AT= IVA. -(AT) + VA • .4V(AT) - A.-r AT - A~rV(AT)}dV+

B[ Oh (13)
S.LAcTdA+ /[-(T-To)+ hlANA

A, Ah,

In finite element analyses, R and form t!e residual vector and tangent stiffness matrix, respectively. The
incremental problem given in Equation (12) is solved iteratively until the solution converges.

As we described earlier, chp.niges in b affect the boundary conditions, which in turn affect the response
quantities, which ultimately aler the value of the response functional G. The objecive of sensitivity analysis
then, is to derive an explicit expression for VG in which only variations of the design parameters 6b, are present.

In the Lagrange multiplier method for the adjoint sensitivity analysis, the residul is adjoined to G to define
an augmented functional G,

G*= ffdV 4. gdA- (VA4 r)AdV + AqPdA + I Ah(T- T)dA (14)

B OB B A, A,
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This ensures that the governing equations are satisfied. In this equation, A can be interpreted as a Lagrange
multiplier, which will eventually be identified as the temperature field of a second, fictitious, adjoint problem
defined over B. Note that since the augmented term and its derivative are both identically zero, G" = G and
VG" = VG.

Formal differentiation of Equation (14) with respect to the design vector gives

=f "dV+ - g dA-
db j T~b a ~b aTTb

B aBr ( -Oq T-'b 04 aVT Or OT Or OVT\ +f (2f _ T + qA+
--g - A 'V T'- qg ), +A (15)

B A,

A([h OT + Oh(TT)+ hT 1dA
OT bb Ob h b

A&

With the exception of A and the implicit terms involving the derivatives of T and VT with respect to b, all of
the terms in Equation (15) are known once the original analysis problem is solved. In the sensitivity analysis,
we will eliminate the implicit terms by a particular choice of the Lagrange multiplier A.

To this end, we separate VG" into terms which explicit quantities, VG , and those which are implicit
quantitiesVG;, where

V% + dA - d A)+ /A T - - 1 dA (16)

aB A, Ah,

and
ka.2z
OT 06

VG -j Of-OT V + or OTdA
OT Ob I OT Ob

B 8B

O OT + L4 OVT _ Or OT 8 VT (17)
' oTob Og Ob 8T- b Og 0b /

B

S0 O b A+ I A( ' (T - T,,.) + hLb) dA
A, Ah

where E = 0 on At. On examination of Equation (17) and Equations (8) and (9) we note that the implicit term
can be annihilated by solving the following adjoint problem: Find that value of A for which

_OG = OR(T, b, ) 0T (18)
0T = 0 aT Ob

for all admissible .u. Note that 8 is the indicated quantity in Equation (17). This equation is linear in A, and
is the adjoint operator for the incremental problem (Equation (12)). This allows us to solve the adjoint problem

efficiently when the finite element method'is used.

Indeed, after solving the original problem with Newton-Raphson iteration, we next store the final decomposed
tauj.'t stiffness matrix. Then the adjoint load vector (IG) is formed which corresponds to the following adjoint
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loads: ofr,\=- in E

A= 0 on AT
q g oA,(19)

Ogq =- on A(

TT OTql = (2k- (T-To)-+h)A+ - onAh,

Finally, we perform a back substitution on the transpose (adjoint) of the decomposed stiffness matrix to evaluate
A. Once A is determined, then VG7 M 0 and the sensitivities are obtained directly from Equation (16). The
efficiency of this method lies in the fact that a single back-substitution into the already decomposed stiffness
matrix, followed by substitution in Equation (16), yields all of the components of the sensitivity vector. In
general, the solution of the primal problem requires several Newton-Raphson iterations. Hence, the added cost

of evaluating the sensitivities is relatively small.

In the finite element evaluation of the adjoint load vector and VG , the same numerical quadrature is used as
that used to evaluate G, the tangent stiffness matrix and residual. This ensures that consistent results are obtained.
In the next section, these methods will be used in an example problem concerning Bridgman crystal growth.

3: APPLICATION TO A CRYSTAL GROWTH PROCESS

3.1 Bridgman Crystal Growth

When crystals for electronics applications are grown using the Bridgman process, the finished bulk crystals
are sliced into thin wafers perpendicular to the growth direction. Electronic devices are then fabricated on these
wafers. The properties of the devices are highly dependent on the degree of perfection and compositions of
the wafer. Since these attributes are set during growth of the crystal, control of the growth process is vital.
In particular, fluid flow in the melt during solidification can interact with the solute field near the crystal-melt
interface to adversely affect the chemical composition of the crystal.[9] The primary means for controlling the
convective flow is to control the shape of the crystal-melt interface, which may be accomplished by defining

appropriate process parameters.

The latest generation of Bridgman furnaces are divided into several independent heating zones along their
length, so that complex temperature distributions can be applied. While this gives these furnaces great flexibility,
it also necessitates that detailed analyses be performed to relate the temperatures imposed on the furnace wall to
the temperature distribution produced in the crystal.

Using the techniques described in the preceding sections, a model is presented for determining the optimal

temperature distribution to impose on the furnace wall to produce the desired temperature distribution in the crystal.
In particular, the desired temperature distribution in the crystal becomes the objective, and the temperatures on
the furnace wall comprise the design parameters. In our example problem, the furnace to be examined is one
that will be used in low gravity space processing.

A configuration proposed by researchers at GTE for growing GaAs crystals in space is illustrated in Figure
1.[10] In the proposed experiment, a round pyrolytic boron nitride crucible with graphite end plugs and a quartz
bottom is used to contain a GaAs charge. The entire container is to be filled on earth, then sent into space, where it
will be placed in a programmable gradient furnace, melted and resolidified in a controlled manner. The geometry
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Boron Nitride . -__,,

ir Gallium Arsenide f Graphite

=-.-

Fig. 1: Schematic view of the model for the proposed experiment to grow GaAs
crystals, and corresponding finite element mesh containing 1216 nodes and 1230 elements.

of the experimental apparatus was exploited to describe the process using a two-dimensional axisymmetric finite
element model. It will be assumed that the ampoule is maintained with its axis parallel to the gravity vector.

The commercial code FIDAP[3], with modifications to enable the design sensitivities to be calculated, was
used for the analysis. The container and melt were modeled using four-noded linear isoparametric elements,
whereas the presence of the furnace wall was represented by a specified temperature distribution exchanging heat
by radiation with the exterior surface of the ampoule. Further details of the radiation calculation are given below.

The governing equations and boundary conditions for these types of problems are well established[1 1], and
are reproduced here only to the extent necessary for the present discussion. In addition to the energy balance
equation, we must consider the momentum balance equation to model buoyancy-driven convection in the crystal.
The density was assumed to be constant, except for thermal expansion in the liquid phase, which is included by
the Boussinesq approximation. With this assumption, the steady form of the momentum balance equation is

po(u. Vu) = -Vp + V2 u +pogo(1 - (T - Te)) (20)

where u is the velocity, p is the pressure, p is the dynamic viscosity, g0 is the gravity vector, j3 is the volumetric
thermal expansion coefficient, and T, r is the temperature at which the density is po (in this case, the melting
temperature). Note that the presence of the buoyancy term couples the momentum balance equations to the
energy balance equation. There is no slip of the liquid past the solid, so that the velocity of the fluid is zero
at all of the boundaries of the melt.

The steady form of the energy balance equation, adopting Fourier's Law ( 1 = -k(x, T)g) for the constitutive
relation for heat flux, is given by

poc%(U. VT) = V. (kVT) (21)

where cp is the specific heat and k is the temperature dependent thermal conductivity. The advection term on
the left-hand side of this equation defines the internal heat generation term, r, noted above. Heat is conserved
at the crystal-melt interface, requiring that

k, VT •n - kjV •n =0 (22)

where n is a unit vector normal to the interface and the subscripts l and s refer to the liquid and solid phases,
respectively. For very dilute alloys, the interface temperature can be assumed to be the melting temperature of
the parent phase, denoted Tin.
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Even though the problem is steady, latent heat can be convected by the fluid flow in the melt. Latent heat

evolution was included in the model using an enthalpy-specific.heatmethod.[12] This x,.thod requires that the
enthalpy of solidification be spread over a range of temperatures, and in all of the simulations which folow, this
interval was chosen to be 1K. The specific heat was computed from the gradients of enthalpy and temperature
at each element integration point

cp = " i VT (23)
VVT-VT

and assembled using a lumped mass matrix formulation. These formulations ensure that the entire heat content
of the material is accounted for in a computationally efficient way.J12]

The ends of the ampoule were considered to be insulated. Heat was transferred -between the ampoule and the
furnace wall by radiation only. The ampoule was assumed to fit closely in the furnace, so that radiation exchange
was limited to opposing faces in the furnace, i.e. no view factor calculations were required. The Stefan-Boltzmann
law was factored, so that a nonlinear convection coefficient, hff, was defined for each integration point

44

qrd = (T - T Urnoce)

ac (T2 + Turn.a.)(T + Tfurnae) (T - T urnace) (24)

For all cases, the emissivity was taken to be constant at 0.7. The material properties used in the simulations
are given in the Appendix.

Pressure was eliminated as a degree of freedom using a penalty method.[13] In this formulation, the continuity
equation for an incompressible fluid is modified to allow an artificial compressibility, so that

V u = -Ep (25)

where e, is a penalty parameter, taken to be 1x10" in all cases. The resulting coupled nonlinear equations for
the velocities and temperatures were resolved at each time step by Newton-Raphson iteration or by successive
substitution. Convergence was declared when both the rms change in each field variable and the residual errors
in the finite element equations fell below Ixl0 "3.

The temperature distribution for a constant temperature gradient of 5 K/mm along the furnace wall was
known to produce significant undesirable curvature of the crystal-melt interface.[l] The primary reason for is
the variation in thermal conductivity between the liquid and solid. Thus, a constant temperature gradient results
in unequal heat fluxes at the interface. (See Equation (22).) To alleviate this problem, the temperatures applied
along the furnace wall will be adjusted to produce a specified temperature distribution within the crystal. The
procedures developed in the previous sections were used for this purpose.

3.2 Implementation of Design Sensitivity Analysis

The commercial finite element code FIDAP[3] was modified to perform the adjoint load and sensitivity
calculations described in the previous section. The sensitivity calculations neglected the fluid velocities and
the coupling to the momentum equations. However, the optimization still converged in an acceptable number of
iterations because the problem.is dominated by the thermal aspects. A shell program was then written to coordinate
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Fig. 2: Schematic of link between conjugate gradient search algorithm and FIDAP.

the nonlinec" heat transfer analysis, the sensitivity analysis, and the numerical optimization. A schematic diagram
showing the details of the interface between the shell program and FIDAP is shown in Figure 2.

The file adjoint.loads in Figure 2 contained the information describing the desired temperature profile, T(z),
to be attained in the ampoule. This distrib'ition was specified on both the center-line and the outer radius of the
crystal (inner radius of the ampoule). The objective function was then defined as the error between the desired
and computed temperatures at N discrete points

N

G =7 (i - -Ti)' (26)
i1

Thus, G represents the function to be minimized.

The only design variables allowed in the problem were the furnace wall temperatures, T.,(z). Note, however,
that in view of Equation (24) there is an implicit dependence of the heat transfer coefficients on Too(z) which
must be accounted for.

The progress of the optimization is illustrated in Figures 3 - 5. It is easy to see that the search through the
design space converges quickly to the optimal solution. For this case, the ambient temperature at each position
on the furnace wall opposite each surface node on the ampoule comprised the 76 design variables. The fact
that there are so many design degrees of freedom leads to the unrealistic fluctuations seen in the furnace wall
temperature profile.

This same case was then modeled using nine zones to span the entire length of the furnace. The ten specified
wall temperatures represent the design parameters, and the intermediate wall temperatures were determined via
linear interpolation. The results for this case are shown in Figure 6. It can be seen that equivalent results are
obtained for the internal temperature. It is interesting to note, however, that the results for the latter case are not
simply an average of the results from the former.

Notice that in all of these cases, the sudden changes in slope in the objective function led to sharp changes in
the furnace wall temperature 'profile and that the ampoule temperature was unable to capture the sudden change.
Accordingly, a new objective function was defined which maintained the discontinuity in slopes at the crystal-melt
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Fig. 3: Progress of the value of the objective function during the optimization
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Fig. 4: Progress of the furnace temperature profiles during the optimization

interface, and rolled off exponentially with distance from the interface. The results, shown in Figure 7, illustrate
that one may attain the final objective, if the physics of the problem allows it. This is the nature of optimization,
where existence and uniqueness of solutions is not always guaranteed.

For each case, the progress through the numerical optimization was very similar. Five to ten line searches
were required, with six to eight function evaluations along each line. This latter number was found to be very
sensitive to the convergence tolerance for the parabolic interpolation. Setting the tolerance below 0.01 resulted
in many more function evaluations with no improvement in the overall results. The problems ran to completion
in about one hour on a Sun SPARCstation 1+.

A quasi-Newton method was also used, but for this problem the results were almost identical. The quasi-
Newton procedure typically required one more line search than the conjugate gradient method, but there were
not enough tests done to draw any definitive conclusions.
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Fig. 6: Comparison of optimal solutions using 10 and 76 heating zones, respectively.

4: CONCLUSIONS

The results of the preceding section indicate the practicality of optimal process design and the utility of the
sensitivity analysis for this class of problems. The optimal solution can be found with little user intervention.
Indeed, the only work required beyond that for the normal analysis is the definition of the design variables and
objective function.

In the future, we would like to extend this work to consider transient problems. However, the analysis becomes
more complicated because the transient problem requires a convolution integral to be evaluated in the adjoint
method. Other methods, such as direct differentiation, may prove to be more efficient for this class of problems.

The sensitivity formulation used for this work did not include the advective terms in the governing equations,
and the fluid velocities were also not considered in evaluating the implicit variations of 0. This will be important
for advection-dominated flows, and this work is in progress.
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Fig. 7: Optimal furnace wall and ampoule temperature profiles for exponential variation in the objective function
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Appendix A: Material Properties Used in the Simulations

Tnhble I Mnilriij prnpertie. ,zirt in the simi1ntinnz

Material Quartz Air Graphite PBN - 1' PBN - 2 GaAs

Density (g/mm3)

2.2 x 10-3  2.35 x 10 .7  1.83 x 10-3  1.9 x 10.1 1.9 x 10.3  5.71 x 10.3

Thermal Conductivity (W/mmK)

273 K 3.4 x 104  1.15 x 10.5  3.0 x 10.2 2.50 x 10.2 4.0 x 10-4  1.7 x 10.3

750 K 4.7 x 104 1.43 x 10.5  2.27 x 10.2 1.70 x 10.2 5.0 x 104 1.7 x 10.3

1060 K 6,6 x 104 1.88 x 10.5  1.78 x 10.2 1.58 x 10.2 5.6 x 104  1.7 x 10.3

1220 K 7.5 x 104  2.02 x 10.  1.52 x 10.2 1.51 x 10.2 6.0 x 104 1.7 x 10.

1511 K 7.5 x 104  2.24 x 10.  1.29 x 10.2 1.50 x 10.2 6.0 x 104 1.7 x 10. 3

1512 K 7.5 x 104 2.24 x 10" 1.29 x 10.2 1.50 x 10.2 6.0 x 104 3.5 x 10.3

1600 K 7.5 x 104 2.30 x 10 .s 1.24 x 10.2 1.50 x 10.2 6.0 x 10-4 3.5 x 10.3

Specific Heat (J/gK) Enthalpy (J/g)

273 K 0.123 0,294 0.19 0.20 0.20 27.4

750 K 0.244 0.294 0.19 0.40 0.40 75.4

1060 K 0.278 0.294 0.19 0,44 0.44 106.5

1220 K 0.284 0.294 0.19 0.47 0.47 122.6

1511 K 0,299 0.294 0.19 0.47 0.47 151.8

1512 K 0.299 0.294 0.19 0.47 0.47 325.5

1600 K 0.299 0.294 0.19 0.47 0.47 575.5

Viscosity (g/mm s)

<1511 K 1.0 x 1010

>1512 K 1.7 x 10.3
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NUMERICAL IDENTIFICATION OF BOUNDARY
CONDITIONS ON NONLINEARLY RADIATING
INVERSE HEAT CONDUCTION PROBLEMS*

by
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Department of Mathematical Sciences
University of Cincinnati
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ABSTRACT

An explicit and unconditionally stable finite difference method for the solution
of the transient inverse heat conduction problem in a semi-infinite or finite
slab mediums subject to nonlinear radiation boundary conditions is presented.
After measuring two interior temperature histories, the mollification method is
used to determine the surface transient heat source if the energy radiation law
is known. Alternatively, if the active surface is heated by a source at a rate
proportional to a given function, the nonlinear surface radiation law is then
recovered as a function of the interface temperature when the problem is
feasible. Two typical examples corresponding to Newton cooling law and Stefan
-Boltzmann radiation law respectively are illustrated. In all cases, the
method predicts the surface conditions with an accuracy suitable for many
practical purposes.

0 Partially supported by a W. Taft Fellowship.
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F I. Introduction. 1

In this paper we investigate the numerical identification .of surface transient
heat sources in one-dimensional semi-infinite and finite slab mediums when the
active surface radiates energy according to a known nonlinear law. Alternatively,
if the active surface is heated by a source at a rate proportional to a given
function, the nonlinear radiating boundary condition is then numerically identified
as a function of the interface temperature if the problem is feasible.

These two tasks can be viewed as suitable generalizations of the classical
problem of attempting to determine the interface temperature between a gas and a
solid with a nonlinear heat transfer law. The existence and uniqueness of a
strictly increasing solution of the semi-infinite body version of this problem has
been considered by Mann and Wolf [Ref.7] for a monotone Lipschitz radiation law.
Roberts and Mann [Ref.1O] extended the previous result after removing the Lipschitz
condition on the nonlinear heat transfer law. Keller and Olmstead [Ref.6
investigated the same problem in the presence of a positive integrable transient
source and introduced a constructive proof for existence and uniqueness of the
interface temperature by the method of lower and upper solutions. The numerical
solution of the nonlinear Volterra integral equation characterizing the active
surface temperature history was implemented by Chambr6 [Ref.l] using the method of
succesive approximations and, more recently, by Groetsch [Ref.3 who succesfully
combined Abel inversion formula with B-spline approximation and product
integration. A natural extension of this technique to solve the same problem in the
finite slab medium is' discussed in Groetsch [Ref.41. Also for the finite slab case,
Villasefior and Squire [Ref.12] have proposed a numerical procedure based on a
generalized trapezoidal rule and Richardson extrapolation. More general problems of
the same kind, combining the effects of convection and radiation at the interface,
can be found in Friedman [Ref.2] and Saljnikov and Petrovic [Ref.II].

In all the works mentioned above, the nonlinear radiation law and the transient
boundary source are supposed to be known in order to determine the interface
temperature. Consequently, if the new task consists on the identification of the
nonlinear radiation law or on the identification of the transient boundary source
function, a different approach must be used.

It is possible to estimate the surface temperature and the surface heat flux in
a body from measured temperature histories at fixed locations inside the body.
However, this Inverse Heat Conduction Problem (IHCP) is an ill-posed problem
because small errors in the data induce large errors in the computed surface heat
flux history or in the computed temperature history solutions and, consequently,
special methods are needed in order to restore continuity with respect to the data.
In this paper we consider initially, the solution of a one-dimensional IHCP by a
fully explicit and stable space marching finite difference implementation of the
Mollification Method introduced by Murio [Ref.8] and Guo, Murio and Roth (Ref.5].
The procedure allows for a direct discretization of the differential equation and
it is gererated by automatically filtering the noisy data by discrete mollification
against a suitable averaging kernel and then using finite differences, marching in
space, to numerically solve the associated well-posed problem. Once the temperature
and the heat flux transient functions have been approximately recovered at the
interface, it is a simple task to numerically identify the transient heat source if
the nonlinear radiation law is known. On the other hand, if the surface is heated
by a source at a rate proportional to a given function, we proceed to approximately
-ecover the nonlinear surface radiation law describing the physical conditions at
th& interface, provided that the range of temperatures at the interface contain
sufficient information.

In Section 2, we define the new identification problems with data specified on aL j
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F continuum of time and data errors measured in the L2 norm and deriye rigorous]
stability bounds. The efficiency of the method is demonstrated in Se-ction 3, where
together with a description, of the numerical procedure, we present -the results of
several computational experiments with rapidly varying and discontinuous profiles,
for both linear - Newton cooling law - and nonlinear - Stefan-Boltzmann law -
models. In all cases, numerical stability and good accuracy are achieved even for
small time steps and high levels of noise in the data. Section 4 includes a summary
and some conclusions.

2. Description of the Problem.

We consider a one-dimensional IHCP in a semi-infinite or finite slab, in which
the temperature and heat flux histories f(t) and q(t) on the left-hand surface (x =
0) are desired and unknown, and the temperature and heat flux at some interior
point x = x0 or at the right-hand surface x = a are approximately measurable. Note
that, equivalently, the data temperature histories might be measured at two
interior points. For the semi-infinite medium, 0 < x 0 and for the finite slab, 0 <
x0 -5 a. We assume linear heat conduction with constant coefficients and normalize
the problem by dimensionless quantities. Without loss of generality, we consider x0

= a = 1 in all cases. The problem can be described mathematically as follows.
For the semi-infinite or finite slab, the unknown temperature u(x,t) satisfies

respectively,

ut(x,t) = Uxx(X,t), t > O, 0 < x < o or 0 < x < 1, (la)
u(l,t) = F(t), t > 0, with corresponding approximate (Ib)

data function Fm(t),

-ux(i,t) = Q(t), t > 0, with corresponding approximate (Ic)

data function Qm(t),
u(xO) =uo(x), 0 < x <co or 0 < x < 1, (Id)
u(0,t) = f(t). t > 0, the desired but unknown (le)

temperature function,
-ux(O,t) = q(t)

= E(u(O,t))-g(t), t > 0, the desired but unknown (if)
heat flux function.

The nonlinear boundary condition (If), indicates that the active surface radiates
energy at a rate proportional to E and is heated at a rate proportional to the
function g. Our aim is to obtain more detailed information about the boundary
condition at the interface x = 0. More precisely, we want to estimate the
function E if g is known or, reciprocally, we want to identify the source function
g if the radiation law E is given.

We also assume that all the functions involved are L2 functions in any time
interval of interest and use the corresponding L2 norm, as defined below, to
measure errors:

Ilfil = [ tf if(t)12 dt ]l/2

In this setting, it is also natural to hypothesize that the exact data functions
F(t) and Q(t) and the measured data functions Fm(t) and Qm(t) satisfy the L2 data

error bounds
IF-Fm!I -- C and IIQ-Qmll -5 C.L
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F It is well- known that saIving for f(t) and q(t) from F(t) and Q(t) amplifies] -

every Foiarier frequency comp6nent of ,the error by the factor exp[w/2]1 / 2 , - <w< o.

This shows that the inverse problem-is highly ill-posed in the high frequency
components. See Murio [Ref.8] and Guo, Murio, -and Roth [Ref.5] for further
-discussions.

Stabilized, Problem.

The one-dimensional IHCP can be stabilized if instead of attempting to find the
point values of the temperature function f(t) or the heat flux function q(t), we
attempt to reconstruct the 3-mollification of the functions f and q, at time t,
given by

J 6 f(t) = (p*f)(t), J 6 q(t) = (pa*q)(t),

where
1

p6 (t) = exp[-t 2 /62 ]
6 It1/ 2

is the one-dimensional Gaussian kernel of radius 6 > 0. The mollifier p6 (t) is

always positive, falls to nearly zero outside the interval centered at the origin
and radius 36 and

00

(p 6 *f)(t) = " p6 U )f(t-T) dT

is the one-dimensional convolution of the functions p6 and f. We notice that J f(t)

is a C0  (infinitely differentiable) function and that the mollifier has total
integral 1. Mollifying system (1), we obtain the following associated problem:
Attempt to find J 6 fm(t) = J 6 u(O,t) and J6 qm(t) = -J 6 ux(O,t) at some point t of

interest and for some radius 6 > 0, given that J6 u(x,t) satisfies for the semi-

infinite or finite slab respectively,

0(a u)t = U SU)xx, t > 0, 0 < x < wo or 0 < x < 1,

J6 u(l,t) = J6Fm(t), t > 0,

-J6 ux(lt) = J Qm(t), t > 0,

J6 u(x,0) = J6u0 (x,O), 0 < x < c or 0 < x < 1, (2)

J6 u(0 ,t) = J6fm(t), t > 0, unknown,

-J 6 ux(Ot) = J 6 qm(t), t > 0, unknown.

This problem and its solutions satisfy the following:

Theorem 1. Suppose that IIF-Fml -5 c and I1 -Qmll -5 c. Then

(i) Problem (2) is a formally stable problem with respect to perturbations in the
data.
(ii) If the exact boundary temperature function f(t) and the exact heat flux
function q(t) have uniformly bounded first order derivatives on the bounded domain
D = [0,T], then Jafm and J 6 qm verify

L j
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F llf-JafmllD -5 0(6) + 3c exp[(26)- 2/ 3] (3) 1
and

nq-J a qm1D  -5 OW + - (U + 3 expla-2/3]). (4)

2
The proof of this statement can be found in Guo, Murio and Roth [Ref.51.

Once the mollified temperature and mollified heat flux functions have been
evaluated at the interface, it is feasible to attempt to identify the source
function g or the radiation energy function E given in formula (If).

Identification of the source function g.

Assuming that the radiation law at the active surface is known, according to
(If), the exact source function is given by

g(t) = E(f(t))-q(t). (5)
The approximate source function, denoted ga(t), is defined by

ga(t) = E(Jafm(t))-Jaqm(t), (6)

and in order to estimate the error, we suppose that the surface radiates energy at

a rate proportional to [f(t) p . Here p is a positive integer, the value p = I
corresponding to Newton's law of cooling and p = 4 to Stefan's radiation law.

The difference (5) - (6) gives

g(t) - ga(t) = [f(t)] p - [JSfm(t)]P + q(t) - Jaqm(t).

From the identity an - bn = (a-b)(an-l+an- 2 b +...+abn-2+bn-1), taking norms and
introducing M = max {lJ 6 fm1lo,D, If 1lo,D}, we get

11g - gallD : pMp I Uf - J6fm
1lD + IIq - J5qmlD.

Combining the last inequality with the upper bounds (3) and (4), we obtain the
estimate

11g - galD s (pMp-I + 1) (() + 3 exp[-2/3]}. (7)

This shows that the identification of the source function g is stable with respect
to errors in the data functions F and Q , for fixed p and > 0.

Remarks:

1. Notice that the approximate source function ga is actually a function of the

radius of mollification 6, the amount of noise in the data c and the exponent p in
the radiation model E.
2. From a more theoretical point of view, inequality (7) can be used to show the
convergence of ga to g in the L2 norm. In fact, setting O(S) = C 6 for some

constant C > 0, and choosing 6 = [ln(I/el/ 2)]-3/2 , after replacing these quantities
in (7), we obtain

1hg - galD -< (pM p I + l)(C[ln(l/e' 2) "3/2 + 3el/2).
This last inequality implies that, for the special selection of the radius of
mollification indicated above, 11g -galD -> 0 as e -) 0, for any value of p.

Identification of the radiation law function E.

From equation (if) it follows that the exact function E, assuming that theL j
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[ source function g is given; satisfies 1F E(u(0,t)) - E(f(t)) = g(t) + q(t). (8)
The approximate function, denoted Eas is defined by

Ea(J 6 fm(t)) = g(t) + J 6 qm(t). (9)

Subtractiig (8) from (9), taking norms and using inequality (4), we inmediately
have

C

lIE - EallD - 0(6) + - (1+ 3 exp[8-2/31D. (10)2

This estimate also shows that the identification of the radiation law - as a
function of time - is stable with respect to perturbations in the data functions F
and Q, for a fixed 6 > 0, provided that the source function is known. However, this
information is clearly not sufficient to identify the physical process at the
interface. Nevertheless, since at each time t i we know the ordered pairs

(ti,J6 fm(ti)) and (ti,Ea(ti)), it is possible to collect the coordinates

(J6 fm(ti),Ea(ti)) for t in a discrete subset of D and obtain a graph of the

approximate funcional relationship between the radiation law and the temperature at
the interface. This is certainly always the case if the cardinality of the range of
temperatures J6 fmt(i)} is sufficiently large. Similar remarks to the ones in the

previous paragraph, about the parameter dependency of Ea and convergence in the L2

norm of Ea to E as the quality of the data functions improve, c 4 0, also apply

here.
The computational details are presented in the next section.

3. Numerical Procedure.

With v = J u and z = -8v/Ox, system (2) is equivalent to

8v az
t > 0, 0 < x < o or 0 < x < 1,

8t 8x
8v

Z = -- , t > 0, 0 < x < co or 0 < x < 1,8x

v(1,t) = J6 Fm(t), t > 0,

z(lt) JaQm(t), t > 0, (11)

v(xO) =J 6 u0 (x,0), 0 < x < w or 0 < x < 1,

v(0,t) J6 fm(t), t > 0, unknown,

z(0,t) = J 6 qm(t), t > 0, unknown.

Without loss of generality, we will seek to reconstruct the unknown mollified
boundary temperature function J 6 fm and the mollified boundary heat flux function

J 6 qm in the unit interval I = [0,1] of the time axis (x = 0). Consider a uniform

grid in the (x,t) space:((xi = ih, tn = nk), i = 0,1,...,N, Nh = 1; n = 0,1,...,M,
Mk = L, where L depends on h and k in a way to be specified later, L > 1.
Let the grid functions V and W be defined by

V7 = v(xi,tn}, W7 = z(xi,tn), 0 -< i -< N, 0 -< n :5 M.

Notice that

L
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n n = J Fm(tn), W n = mt 0 -5 n -FVN F (t) N -JQm(tn), On M

and
0

V9 = J6uo(xi,0), 0 -5 i -5 N.

We approximate the partial differential equation in system (11) with the consistent
finite difference schemes

n h v
1

n+l -IWI~ = I _ -. i - I )'

2k
n h - h n (12)Vi_ 1 - Vl Wi_1, (2

i= N, N-1,...,l; n = 1,2,... M-l.

Notice that, as we march backward in the x-direction, we must drop the estimation

of the interior temperature from the highest previous point in time. Since we want

to evaluate {V8) and {MO} at the grid points of the unit time interval I = [0,1]

after N iterations, the minimum initial length L of the data sample interval in the
time axis (x = 1) needs to satisfy the condition L = kM = 1 - k +k/h.

Once the temperature J8 fm and the heat flux J 6 qm have been reconstructed, we

proceed with the approximate identification of the source function ga or the

radiation law function Ea as explained in Section 2.

Remarks:

1. The radius of mollification, 6, can be selected automatically as a function of
the level of noise in the data. In fact, for a given c > 0, there is a unique 6 >
0, such that

IIJ6Fm - FMIID = C. (13)

For the proof of this assertion and some discussions on the numerical
implementation of this practical selection criterion, see Murio [Ref.9].

2. For the proof of the unconditional stability of the finite difference scheme
(12) and the analysis of the convergence of the numerical solution of the mollified
problem (11), the reader should consult Guo, Murio and Roth [Ref.51.

Numerical Results.

In order to test the accuracy and the stability properties of our method, in
Problem 1, the approximate reconstruction of a source function g(t) and a nonlinear
radiation law E(u(O,t)) are investigated for a one-dimensional finite slab exposed
to a heat flux data function at the free surface x = 1 given by -ux(1,t) = Q(t)

0, t > 0, and a temperature data functionf 1 2 (-14 )n

u(1,t) = F(t) = (t-0.2) - -exp -- n2i 2(t-0.2)], t > 0.2,
6 7(2 n=1 n2

0, 0 < t -s 0.2.

The exact source solution to be approximately reconstructed at the interface x = 0

has equation g(t) = E(u(0,t)) - q(t), where E(u(0,t)) = [u(0,t)] p and q(t) =
-ux(O,t). We consider the values p = I and p = 4 corresponding to Newton's law ofL 3
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cooling 'and Stefan's radiation law respectively. The exact radiation Ilaw at. the1
interface is given by E(u(O,t)) = g(t) + q(t) and we only consider the nonlinear'

case p = 4. If the i nitial temperature distribution u(x,O)., is zero, the exact
temperature and heat flux functions at the intefface are given respectively by
a function at the free surface x = I given by -ux(l,t) = Q(t) = 0, t > 0, and a

temperature data function

u(O,t) = f(t) = (t-0.2)+ - - E -_ exp [-n 2 i2 (t-0.2)], t > 0.2,3 nZ n=l n2

0, 0 < t s 0.2.

and

-ux(O,t) = q(t) = f 1, t > 0.2,

L0, 0 < t - 0.2.

With this information we generate the exact functions E(u(0,t)) and g(t) for our
model problem.

In Problem 2, we attempt to approximately reconstruct the transient source
function g(t) for a semi-infinite body initially at zero temperature with data
functions

u(1,t) = F(t) = erfc[(t-0.2)-1'?/2J, t > 0.2,

0, 0 < t 5 0.2,

and

Ux(lt) = Q(t) = [(t-0.2)]-[/ 2 exp{-[4)t-0.2)]1-}, t > 0.2,

10, 0 < t -5 0.2.

The unique temperature solution at the interface is

u(0,t) = f(t) = 1, t > 0.2,

0, 0 <t-S0.2.

and the corresponding heat flux at the interface is

-Ux(O,t) = q(t) = (i[(t-0.2)]-/ 2, t > 0.2,

10, 0 < t S 0.2.

In this case, we do not attempt the identification of the radiation law at the
active boundary. The energy as a function of the interface temperature is either 0
or I for any value of p making its identification impossible. There is no enough
information in the range of boundary temperatures which in this example is reduced
to just two temperature values.

Since in practice only a discrete set of points is generally available, we shall
assume that the data functions Fm and Qm are discrete functions measured at equally

spaced points in the time domain I = [0,L], where L = 1 - k + k/h, Nh = 1, h = Ax
and k = At. In order to compute JaFm(tn) and J6 Qm(tn) in I, we need to extend the

data functions in such a way that Fm and Qm decay smoothly to zero in the interval

16max = [-38max,L+ 3 8 max] and both are zero in R - I max. In what follows, we

consider the extended discrete data functions Fm and Qm defined at equally spaced

sample points on any. interval of interest in the time axis.
The selection of the radius of mollification is implemented by solving the

L j
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F discrete version of equation (13), using the bisection method. 1
Once the radii of mollification 3F and 6Q, associated with the data functions Fm

n
and Qm respectively, and the discrete filtered data functions J6 Fm(tn)=VN and

J Qm(tn)=Wn, O-sn-sM, are determined with 6 = max(6 F,6 Q), we apply the

finite difference algorithm described previously in this section, marching backward

in the x-direction. The values Vo and W 0 - n M-N, so obtained, are then taken

as the accepted approximations for the interface temperature and heat flux
histories respectively at the different time locations at x = 0. Finally, we
identify the approximate transient source function ga or the approximate radiation

law function Ea at the grid points of the time interval I = [0,1] using equations

(6) and (9).
In all cases, we use h = Ax = 0.01 and k = At = 0.01. Thus, N = 100, L = 1.99, M

- 200, 6rax= 0.1 and I max= [-0.3,2,291. The noisy data is obtained by adding a

random error to the exact data at every grid point tn in I , :

Fm(tn) = F(tn) + en,l

Qm(tn) = Q(tn) + n,2,

where en,l and en,2 are Gaussian variables of variance r 2 = C2.

If the discretized computed transient source function component is denoted by gn
a

and the true component is gn = g(tn), we use the sample root mean square norm to

measure the error in the discretized interval I = [0,11. The solution error is then
given by

1 M-N ] 1/2
- giI= L M (gf- gn)N n.

n
If the discretized computed radiation law function component is denoted by Ea =

Ea(tn) and the true component is En = E(tn), after evaluating the ordered pairs

(V0nEa),0 -5 n -5 M-N, we obtain a graph of the approximate functional relationship

between the radiation law and the temperature at the interface. This plot is then
compared with the exact graph corresponding to the values (f(tn),E(tn)) of the

model problem.
Tables 1 and 2 show the results of our numerical experiments associated with

Problems 1 and 2 respectively, when attempting to identify the transient source
function at the interface. In all cases, the numerical stability of the method is
confirmed. The uniformly smaller error norms in Problem I are expected since
at time t = 0.2 the exact source solution has a finite jump discontinuity while in
Problem 2 the exact source solution has an infinite jump at time t = 0.2. For this
reason, we have added an extra column in Table 2 indicating the error norms in the
time interval [.3,1], after the discontinuity. It is clear that the method rapidly
dissipates the effect of the singularity, a very desirable feature.

The qualitative behavior of the reconstructed transient source function for
Problem I is illustrated in Figures 1 and 2 where the numerical solution for an
average perturbation c = 0.005 (full line) is plotted for p = I (Newton's cooling
law) and p = 4 (Stefan's radiation law) respectively. In Figure 3 we show the graph
associated with the reconstructed nonlinear radiation law as a function of the
approximate temperature at the interface for p = 4 (full line) and the exactL
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F boundary radiation law (star symbols). Figures 4 and 5 show the computed source
functions (full lines) for p = 1 and p = 4 respectively, for Problem 2 and for the
noise level c = 0.005.

PROBLEM 1

p = 1 (Newton) p = 4 (Stefan)

a 1 Error norm C a Error norm

0.000 0.04 0.0866 0.000 0.04 0.0867
0.002 0.06 0.0921 0.002 0.06 0.0929
0.005 0.06 0.1014 0.005 0.06 0.1038

Table 1. Error norm as a function of the level of noise

PROBLEM 2

p = 1 (Newon) n p = 4 (Stefan)

Error norm _ Error norm[0, 1]/[.3, 1) [0,1]/[.3, 1]

0.000 0.04 .5208/.0183 0.000 0.04 .5135/.0373
0.002 0.06 .5560/.063 1 0.002 0.06 .5673/.0675
0.005 0.06 .5879/.1108 0.005 0.06 .5935/.1375

Table 2. Error norm as a function of the level of noise

4. Conclusions.

An explicit and unconditionally stable space marching finite difference method
for the solution of the one-dimensional transient inverse heat conduction problem
has been implemented for the numerical identification of suiface heat sources, if
the energy radiation law at the active interface is known, and to the numerical
identification of the nonlinear surface radiation law if the surface is heated by a
source at a rate proportional to a given function and the interface temperature
contains enough information.

The computational procedure is applied to two examples corresponding to Newton
cooling law and to Stefan-Boltzmann radiation law. In both protlems, the source
functions to be identified have discontinuous histores and in one case an infinite
jump. The algorithm restores stability with respect to the data, which is essential
for the introduction of the inverse problem approach, and good accuracy is
obtained, even for small time sample intervals and relative high noise levels in
the data.

REFERENCES

[1] Chambr6, P. L, "Nonlinear heat transfer problem", J. Applied Physics, Vol.10,
No. 11, 1959, pp. 1683-1688.

[2] Friedman, A., "Generalized heat transfer between solid and gases under
nonlinear boundary conditions", J. Math. Mech., Vol. 8, 1959, pp. 161-183.

L [31 Groetsch, C. W., "Convergence of a numerical algorithm for a nonlinear heat jL3



237
Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences

(ICIDES-TIfl. Editor: G.S. Dulikravich. Washington D.C.. October 21-25. 1991,
transfer problem", Z. angew. Math. Mech. Vol. 65, 1985, pp. 645.

[41 Groetsch, C. W., "A simple numerical model for nonlinear warming on a slab",
to appear in J. Comp. Appl. Math.

[5] Guo, L., Murio, D. A. and Roth, C., "A mollified space marching finite
difference algorithm for the inverse heat conduction problem with slab
symmetry", Comp. Math. Applic., Vol. 19, No. 7, 1990, pp. 75-89.

[61 Keller, J. B. and Olmstead, W. E., "Temperature of a nonlinearly radiating
semi-infinite solid", Quart. Appl. Math., Vol. 30,. 1972, pp. 559-566.

[7] Mann, W. R. and Wolf, F., "Heat transfer between solids and gases under
nonlinear boundary conditions", Quart. Appl. Math., Vol. 9, 1951, pp.
163-184.

[8] Murio, D. A., "The mollification method and the numerical solution of the
inverse heat conduction problem by finite differences", Comp. Math. Applic.,
Vol. 17, 1989, pp. 1385-1396.

[91 Murio, D. A., "Parameter selection by discrete mollification and the
numerical solution of the inverse heat conduction problem", J. Comp. Appl.
Math., Vol. 22, 1988, pp. 25-34.

[10] Roberts, J. H. and Mann, W. R., "On a certain nonlinear integral equation of
Volterra type", Pacific J. Math., Vol. 1, 1951, pp. 431-445.

[11] Saljnikov, V. and Petrovic, S., "Heating problem of a horizontal semi-
infinite solid by natural convection", Z. angew. Math. Mech., Vol. 68, 1988,
pp. 58-59.

[12] Villasehior, R. and Squire, W., "Heat conduction in a slab with a general
boundary condition: an integral equation approach", in Integral Methods in
Science and Engineering (F. R. Payne, et al., eds.), Harper and Row, New
York, 1986.

2.25-

.75 /
-- 4.

C
o 1.25

C

h 0.75-

0.25-

-0.25 -- 7-Ti - -1

0.00 0. 54 1.00
T ime

Flg.1 Source function for Newton Law

Problem 1, C=0.05, 3=0.06, At=O.Ol
Exact: (* 0) ; Computed:L j



Third lntrfir aiinAl Conference on-Inveise Design Con s , andOptimiadoni EngineingScicnces

(ICIDES-IITh. Editor: G.S. Dulilkavich. Washit ton DX'.'October 23-25 1991.

2.75 2. '00

1 .5O
1 .75

C -C
0 0

o o 1.00-
C cDDLt. , -

0.75

0.60-

-0.25 - 1 1 I  ' I .M0-T

0.00 0.50 1.00 -0.see.00 0.50 1.00 1.50

T Lime Tempera Lure

Fig. 2 Source function for Stefan Law Fig.3 Reconstructed Stefan radiation Law

Problem 1, C=0.005, 6=0.06, At=O.Ol Problem 1, C=O.O05, 6=0.06, At=o.oi
Exact: (* * *) ; Computed: ( ) Exact: ( * ) ; Computed: ( -)

4.50-

3.50

2.50O

c c
o 2.50 0

0 0 -'

1.50 1.50

0.50- 0.50

-0.50--T-' T--- 1

0.00 0.50 1.00 0.00 0.50 1.00

T ime Tie
FI'g.4 Source function for Newton Law Fig. 5 Source function for Stefan Law

Problem 2, C=0.O0S, 6=0.06, At=O.Oi Problem 2, C=0,005, 8=0.o0, At=O.Oi
Exact: (0 * ) ; Computed:( ) Exact: (0* ) ; Computed:( - )
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F COMPARISON OF FOUR STABLE NUMERICAL METHODS
FOR ABEL'S INTEGRAL EQUATION

Diego A. Murio and Carlos E. Mejia

Department of Mathematical Sciences
University of Cincinnati

Cincinnati, OH 45221-0025
U.S.A.

ABSTRACT

The 3-D image reconstruction from cone-beam projections in computerized
tomography leads naturally, in the case of radial symmetry, to the study of Abel-
type integral equations. If the experimental information is obtained from measured
data, on a discrete set of points, special methods are needed in order to restore
continuity with respect to the data. A new combined Regularized-Adjoint-Conjugate
Gradient algorithm (introduced in this work), together with two different
implementations of the Mollification Method (one based on a data filtering
technique and the other on the mollification of the kernel function) and a
regularization by truncation method (initially proposed for 2-D ray sample schemes
and more recently extended to 3-D cone-beam image reconstruction) are extensively
tested and compared for accuracy and numerical stability as functions of the level
of noise in the data.

1. INTRODUCTION.

The difficult problem of determining the structure of an object from its 3-D
cone-beam data projections is currently receiving considerable attention (see B. D.
Smith, Ref [16]). When the object is known to be radially symmetric, its structure
can be determined by using the inverse Abel transform. If the object does not have
radial symmetry, it can be reconstructed, in principle, by using the inverse Radon
transform.

Abel's integral equation can be written as

f(x) = J"Xg(s) (x - s)- 1/2 ds, 0 5 x - 1, (1)
0

where the function f(x) is the data function and g(s) is the unknown function. The
exact solution is given by

I x
g(x) = - f f'(s) (x - s)-1/2 ds, 0 s x s 1, (2)

Ut 0

provided the derivative exists and f(O) = 0. (See R. Gorenflo and S. Vessella, Ref
[61).

It is well-known (References [1], 121, [4] and [61) that Abel's integral equation
is somewhat ill-posed, that is, small errors in the data f(x) might cause large
errors in the computed solution g(x). Consequently, the direct use of formula (2)
is very limited and special methods are needed.L
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F This paper has two main purposes. First, we present and briefly analyze a new]
stable method for the numerical solution of Abel's integral equation, Method I, by
weakly coupling the original problem with its adjoint formulation obtaining a
regularized system of linear equations which is then successfully solved by the
conjugate gradient method. Second, we test and compare the numerical stability and
the accuracy of Method I and three other known algorithms on several benchmark
examples as a function of the amount of noise in the data.

Method II in this paper (see D. A. Murio, Ref (12]), is obtained by initially
filtering the noisy data by discrete convolution with a suitable averaging kernel
instead of mollifying the kernel function in equation (2), Method III, as required
by K. Miller (Refs [10] and [11]) in his reconstruction algorithm for 2-D ray-
sampling schemes. Method IV has been implemented by D. A. Murio, D. Hinestroza and
C. E. Mejia (Ref (13]) based on a regularization by truncation technique initially
proposed by B. K. P. Horn (Ref [9]) and recently extended to 3-D image
reconstruction methods from cone-beam projections by B. D. Smith (Ref [151).

In Section 2 we introduce the new Method I, analyze the consistency and stability
properties of the algorithm and obtain an upper bound for the error. In Section 3,
we describe the other procedures and discuss in detail the numerical implementation
of all the methods involved. Section 4 is devoted to the numerical testing of the
four algorithms and the presentation of several useful comparisons involving
Methods I, II, III and IV. Some conclusions are included in Section 5.

2. REGULARIZED-ADJOINT-CONJUGATE GRADIENT METHOD. (Method I).

In a more abstract setting, equation (1) can be written as

Ag =f,

where A represents the Abel integral operator. For suitable functions h and q, the
adjoint operator A* is defined by

A*h(x) = q(x) - h(s) (s-x)- 1/2 ds, 0 -5 x -5 1,
x

and it is clear that the homogeneous equation A*h = 0 has the unique solution h(x)
- 0, 0 -5 x -5 1. Hence, as a direct consequence of Fredholm alternative (see P. R.
Garabedian, Ref [5]), solving the singular equation Ag = f for smooth but
otherwise arbitrary data functions f satisfying f(O) = 0, is equivalent to solve
the uncoupled system of linear integral equations

g = 
f

{* h = 0. (3)

In order to help stabilize the inverse problem, we propose to solve, instead of
(3), the weakly coupled system of equations

fAu - ov =f
A*v + au =0, 0 < a << 1, (4)

by successive approximations. This system is equivalent to

L j
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F1
Au Ow~ = f

A*v + a23u - u + u = 0,

where 3 is any nonzero real number to be determined. We elect 13 to depend on the
iteration and rewrite the previous system as

Aun - Uvn = f

ag nA*vn + a2 3nUn - Un + Un+l = 0,

to obtain

{v n = Au n - f

un+1= Un - t3n[c 2un + A(OVn)], n = 0,1,2,..., (5)

uo arbitrary, usually 0.

Remarks:
1. Each iteration in (5) involves the solution of two "direct" problems: one
corresponding to the original operator, Aun, and the other associated with the

adjoint operaTor, A* (avn).
2. Elimination of v in system (4) leads to the set of normal equations, with I
indicating the identity operator,

(A*A + a 2l)u = A'f, (6)

which characterizes the minimum of the zero order Tikhonov functional (see C. W.
Groetsch, Ref [71) 1

J(u) = - (II Au - f 21 2 + a2 II u 1i ). (7)
2

3. The gradient of the functional (7) is given by

VJ(u) = x2u + A*(Au - f)

and it is easily computed if the solution of the adjoint problem is known. In fact,

taking into consideration (4), we can write VJ(u) = at u + A*(av), and for each
iteration we get

VJ(u n ) = un + A*(ov). (8)

These considerations allow us to choose 3,, for each n, in such a manner that

system (5) can now be solved by the Conjugate Gradient Method (W. M. Patterson, Ref
[141).

The complete abstract algorithm, after introducing the notations

(f,g) - f(x)g(x) dx and 11 f 11 a (f,f)"2 , corresponding to the inner product and
0

L j
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F norm respectively of square integrable functions on the interval [0,11, is as'
follows:

For n = 0;
0) Set uo = 0 and choose a > 0.

1) Compute Auo, i.e., solve the original direct problem.
2) Compute the residual avo = Auo - f.
3) Compute A*(avo), i.e., solve the direct adjoint problem.
4) Evaluate the gradient do = VJ(u o) using formula (8).

II d0  1 2

5) Set ro =

C ido 11 2 + I IAdo 1 2

6) Update: u1 = uo - rodo.
For n = 1,2,...,

1') Solve the original direct problem Aun.

2') Compute the residual xvn = Aun - f.

3') Solve the direct adjoint problem A*(ovn).
4') Evaluate the gradient VJ(u n ) using formula (8).

II VJ(u 0) lIIz

4") Compute dn = VJ(un) + dn-r

II VJ(un-I) 112
(VJ(Un),d n )

5') Set rn =
a2 II dn 1 2 + II Adn 11 2

6') Update: un+1 = Un - rnd n.

Stability of Method I.

We consider now the more realistic situation when instead of the exact data
function f, we only know some noisy data function fe satisfying

II f - fc I 1 " c .

In this section the unique solution of system (4) will be denoted by u& to
emphasize its dependency on the regularization parameter a and the level of noise
in the data c. Assuming that the ideal problem (1) for errorless data f has the
unique solution g = A-If, since uc satisfies equation (6), with f replaced by fe,
it follows from well-known estimates in the theory of Tikhonov regularization that

Ig -u II=Co 1/ 2 , and IIua - u lI- c orl/,

for some constant CO > 0, independent of a; u. denotes the regularized solution
when c = 0.

Combining these estimates, we obtain the error upper bound

L
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F I
I{ g - u { -I Co M1/2 + C a-1/2

and choosing a = Cle for some constant C1 > 0, -it follows that

II g - u II - (Co + Cr1 ) a1/2 (9)

which shows that, theoretically, as the quality of the data becomes better and
better (c -> 0), we get convergence with rate a1/2. See C. W. Groetsch (Ref [7]) for
details.

The convergence of the sequence of iterates un from system (5), with 3n as

discussed above, to the unique solution uc of the canonical equations (6) as n - w

is well documented, for instance, in the work of C. W. Groetsch, J. T, King and D.
A. Murio (Ref [8]) and will not be pursued further here.

The finite dimensional version of the combined Regularized-Adjoint-Conjugate
Gradient algorithm will be discussed in the next Section.

3. METHODS II, III AND IV. NUMERICAL IMPLEMENTATIONS.

Method II in this paper is based on attempting to reconstruct a mollified version
of the solution g in equation (2). After introducing the 3-mollifier

1 t2
pax = a it", exp[-x 2/ 2 ] (10)

of "blurring radius" 8 and extending the data function fC to the interval
[-38,1+38] in such a way that it decays smoothly to zero on [1,1+361 and it is zero
on [-36,0], an approximate solution is defined by

1 xg (x) = - J'o(p 8
* fC)'(s) (x - s)-1/2 ds, 0 -- x -- 1. (11)

Here,
wd x+36 d

(pa fC)(x) = S - [p8 (x - s) fc(s)] ds S - [pa(x - s) fc(s)] ds,
-co dx x-36 dx

showing that the main idea of the method consists on replacing the noisy data

function fC by the filtered data function p * f . It is important to notice that

the radius of mollification, 8, can be uniquely and automatically determined as a
function of the amount of noise in the data, c, based in the fabt that there is a
unique value of the regularizing parameter 8 for which

-I a * fr _ fc 11 = C. (12)

Under very mild conditions, i.e., if fC is continuous and if the second
derivative of the errorless data function f is uniformly bounded by M? in the

L j
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F sample interval (0,1), the following error estimate ,holds 1
6

II ge - gl ' (a M2 -' C/8). (13)a 7E

The complete abstract algorithm is as follows:

1) Automatically determine the unique radius of mollification 6 as a function of
the level of noise c.

2) Smoothly extend the noisy data function fe to [-36,1+381.

3) Compute the derivative of the filtered data function p6 fe.

4) Compute gL using equation (11).

For more details and further discussions, the reader should consult D. A. Murio,
Ref [12].

Method III is based on the Mollification Method as originally proposed by K.
Miller (Refs [10] and [11]) for 2-D ray-sampling reconstruction geometries. First
we notice that the exact formula (2) can be written

1
g(x) =-(k * fx, 0 - x -1,

where k(t) = t-12 represents the kernel function. The mollification of the last
equation with the averaging kernel defined in (10) gives

1
(P" g)(x) = - (p6  k * f')(x).

In Method II, we associated the right-hand side of this equation as k* (p * f') =

k* (p6 * f)'; for Miller's idea we associate as (p8 * k) * f'= (p6 * k)'* f and obtain

the approximate reconstruction solution

I x
gc(x) = - o(P6  k)'(x - s) fc(s) ds, 0 -S x s 1. (14)

Mathematically, formulae (11), for Method II, and (14), for Method Ill, are
identical. Consequently, the theoretical error bound (13) derived for Method II
also applies for Method III.

The complete abstract algorithm for Method III is given by:

1) Choose 6 > 0.

2) Compute the mollified kernel p6 k.

3) Evaluate the derivative of the mollified kernel p6 k.

4) Compute ge using equation (14).

Remarks:
1. In Method III, the mollified kernel is computed only once and is used repeatedly
for different data functions.

L



245

Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences

(ICIDES-III). Editor: G.S. Dulikravich. Washington D.C.. October 23-25. 1991.F ,I
2. Method II requires a filtering of each data function and the corresponding
parameter is automatically selected according to the quality of the measured data.
3. The selection of the mollification parameter in Method III requires further
consideration.

Method IV is based on a reconstruction technique initially proposed by B. K. P.
Horn (Ref [9]) for arbitrary 2-D ray schemes and more recently extended to 3-D
image reconstruction methods from cone-beam projections by B. D. Smith (Ref [151).

Integrating by parts equation (2), we obtain the equivalent expression

1 { x1lx- "

g(x) = -im T f(s) ds - - f f(s)(x-s) 3'2 ds 0 -5 x -- 1.
7> 0 x-'Y 2 o

The approximate inverse Abel transform is now obtained by eliminating the limit
procedure in the last expression, i.e.,

1 x1 x- 'fs

gr(x) 7-3/2 S fC(s) ds - - S fe(s) (x - s)-3/2 ds 0 : x : 1. (15)
7 t x-7 2 o

By requiring the second derivative of the errorless data function f and the

measured data function fC to be continuous, we obtain the following error estimate

g _ g I- - MI + - C 7-1/2 + 0( , (16)
7 2i n IT

where M, is a uniform bound for f' on the interval (0,1). For a proof of this

assertion and a complete analysis of Method IV, see D. A. Murio, D. Hinestroza and
C. E. Mejia (Ref [131).

The complete abstract algorithm for Method IV is reduced to
1) Choose x > 0.
2) Compute gC using formula (15).

7

Remark:

The error estimates (9), (13) and (16) show that all the methods are consistent
and stable with respect to perturbations in the data, in the L2 norm, for a fixed

choice of the several regularization parameters c, 3 or '.

Numerical Implementations.
Since in practice only a discrete set of data points is generally available, we

assume that the data function f- is a discrete function measured at equally spaced
sample points on the interval [0,1]. For h > 0 and Nh = 1, we let x, = jh and

denote fC(xj) = fN, j = 0,1,...,N, with f = 0.

Method I:

Discretization leads to a finite dimensional version of the combined
Regularized-Adjoint-Conjugate Gradient algorithm of Section 2. The operators A and

A* are represented now by a matrix A and its transpose AT, respectively. TheL j



Third lntermationia Confer6nce on.ifiVers.Design Cohcepts and opimization in Engineering Sciences

(TCIDES-llfl. Editbr: G.S. Duliktavich. WashintonD.C.. October 2325. 1991 .

approximate -discrete solution u mg, obtained after m iterations, the gradient

VJ(um), dM, rm, uo and the residual xvm are now N-dimensional real Vectors. From

equation (), a simple discretization gives the lower triangular system of linear
equations

aj.,l_I(Um,,)! fj ,

where
a= (jh)-1/2 , j = 1,2...

indicates the (j-1) subdiagonal of the N x N matrix A.
The discrete algorithm for the Conjugate Gradient method (see P. G. Ciarlet, Ref

[3]) follows exactly the steps described previously in Section 2, and we only have
to add the necessary stopping criteria, given by

II e - c 2 : TOL I I UmM 11 2,

where TOL is a small positive tolerance parameter entered by the user and

=f .{ N [fj2 }1/2 (17)

is the discrete I? norm on [0,1].

Method II:

.To numerically approximate g (x), a quadrature formula for the convolution

equation (11) is required. The objective is to introduce a simple approximation and
avoid any artificial smoothing in the process.

Given xj, j = 0,1,...,N, we define

qc(x) = EJ f 1t(x), 0 5 x -: xj,
1=0

a piecewise constant interpolation of fC(x) at the grid points xj. Here,

= £, 0:5 x -5 h/2 J)= 1 xi-h/2 s x s xi

0( 0, otherwise '0, otherwise

and

1 x-h/2 s x - xl+h/2{IN) 0: otherwise , i = 1,2....j-1.

The computational algorithm is as follows:
After smoothly extending the discrete data function to any interval of interest

containing the sample interval [0,11, we determine the radius of mollification 6 as

L j
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F a function of the amount of noise in the data c by solving the discrete version of]
equation (12) using the bisection method. Next, we substitute fC by its
interpolation qC and compute the approximation to p8 • fC given by the discrete

convolution

(p8  qt)(x) E fc(p O k)(Xj) = fmC M
kk j

where the weights m' . are evaluated exactly. A discrete version of the derivative of
J

the discrete filtered data function is obtained using centered finite differences.

Finally, the discrete approximation to g is calculated by discretely convolving

the computed derivative approximation against the sampled data function (see
equation (11)). For a detailed analysis of this algorithm, the reader is referred
to D. A. Murio (Ref [121).

Method III:

The convolution p, * k requires an extension of the singular kernel k for values

of x less or equal to zero. In our implementation we use the following symmetric
extension:

k(O) = 2h- 12 , k(-x) = k(x), x > 0.

The discrete approximation is now straightforward:
With sj = (pa * k)(xj), j = 0,1,..., N, the discrete convolution formula

corresponding to equation (14) is

gh, (0) =o

gh6(X I k=1 Sj-k(fk I - fk. 1 )/2, j = 1,2,.., N-I

and
1

g, 6(1) = g,S(xN- 1) + - So(f -

where geh is the approximate inverse Abel transform at the grid points.

Method IV:

In this case, we first construct a piecewise linear interpolation of fC(x) at
the grid points xj, given by

qc(x) = f W J f 1tx), 0 -< x -S xj,
1=0

where the functions .0,(x), i = 0,1,... ,N are given by

L J
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F 1
0(x ) 1-x/h, 0-: x h Oj(x) = 1+(x-xx)/h, xj4ix5xy

0 otherw i se, 0 otherwise,

and

l+(x-xl)/h, x1_ I -5 x -9 x,

1(x) = 1-(X-xi)/h, x, -5 x -5 x1,1
0 otherwise, i = 1,2....j.

We notice that the approximate solution g(x) of formula (15) can also be

written as

1
g4(x) = - (H * fC)(x), 0 -5 x 1 1, (18)

where the kernel H. is defined by

Tr- 3/ 2,  0 -5 t <r

H (t) = - 3/ ,

The quadrature formula for equation (18) is obtained by directly convolving the

kernel function H. with qC as indicated below. Thus, the computed solution at the

grid points is given by

I1e J f J.(xj),

g3,h(Xj) - (H, qC)(xj) = _ 'J f xn It 1=0

where the weights

b1(xj) = 0f H,(xJ - s) 0,(s) ds

are evaluated exactly for i = 0,1,..., j. The readers interested in further details
should consult D. A. Murio, D. Hinestroza and C. E. Mejia (Ref [131).

4. NUMERICAL RESULTS AND COMPARISON.

In this section we describe the tests that have been implemented in order to
compare the performance of the methods introduced in previous sections.

We tested the methods on three examples. In all of them, the exact data

function is denoted f(x) and the noisy data function fc(x) is obtained by adding an

c random error to f(x), that is, fC(xj) = f(xj) + coj, where xj = jh, j =

0,1,...,N; Nh = 1 and cj is a uniform random variable with values in [-1,1] such

that

max I f(x) - f(xj) C - .

The exact inverse' Abel transform is denoted g(x) and its approximation given byL j
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any of the methods is denoted gh(X), where p represents the regularization
parameter of the particular method.

Example 1:

As a first example we consider the data function f(x) = x with exact inverse
2

Abel transform g(x) =- xl/Z. This data function satisfies all the necessary
7t

hypotheses for convergence estimates of Sections 2 and 3.

Example 2:

The data function

f(x) = f 2x2  0-5x< 1/2
l1-2(1-x) 2, 1/2 -sx-sl,

is only once continuously differentiable on [0,11, partially violating the required
conditions for the theoretical error analysis of Sections 2 and 3. In this example,
the exact inverse Abel transform is given by

{ (16/3it)x
3 /

', Osx 1/2

g (16/3gr)x 3 / 2 + (16/3t) (x-1/2) 3 /2 - (8/it)(x-I/2)1/ 2 (2x-l),

1/2 <xsl.

Example 3:

The data function is defined as follows:

0, 0 -s x <0.2,
f(x) = 2(x-0.2)1/ , 0.2 - x - 0.6,

2(x-0.2)1/7- 2(x-0.6)1/2  0.6 < x -5 1.

Its first derivative is not continuous on [0,11, strongly violating the
nccessary hypotheses for the convergence estimates of Sections 2 and 3. The exact
inverse Abel transform is given by

g(x) = 1 , 0.2 : x 5 0.6,
0, otherwise.

The four methods were tested for three different values of N, N = 200, 500 and
1000, three different values of c, c = 0.0, 0.005 and 0.01, and several values of
the corresponding regularization parameters. The algorithms were extensively used
and we numerically determined appropriate values for the regularization parameters
for each method, except for Method II where the radius of mollification was
selected automatically. These quasi-optimal parameter values are used in the tables
and figures below.

-I1 1 | II I L. .



Thid International'Conference on Inverse besign-Concepts'and Optimization in-Engineering'Sciences
(ICIDES-1ID. Editbr G.S. Dulikravich. Washingtbn D.C.. October 23-25. 1991.

F
Different values of c provide a crucial test for stability. Tables 1, 2 and 3

illustrate this point. The error norms in the tables are computed as II g - ge, h
p 2

according to definition (17). In the tables, each row corresponds to one of the
methods with a fixed regularization parameter, and shows the change in the error
norm due to changes in the level of noise in the data. The presented numerical
results indicate stability. The columns in the tables allow us to compare the
performance of the methods under similar conditions.

Figures I to 4 show the reconstructions of the step function of Example 3
provided by the four methods for the same number of sample data points, N = 500,
the same noise level, c = 0.01, and quasi-optimal regularization parameters. The
qualitative behavior is quite good taken into consideration the high amount of
noise in the data.

5. CONCLUSIONS

The following are some conclusions based on the implementations of the methods
presented in this paper:

Consistency and stability of the four methods is clearly confirmed throughout
experimentation and very weak dependency on the parameter N is observed.

Method II provides an automatic mechanism to select the radius of mollification
as a function of the level of noise in the data. Furthermore, as a consequence of
the stability of the four methods, it is easy to find, by numerical
experimentation,lower and upper bounds for quasi-optimal regularization parameters.

An advantage of method III over method II is that the mollification of the
kernel is computed only once and can be used for different data functions. Methods
II applies mollification to each data set.

All the results are very competitive. However, mollification solutions are
slightly better in terms of accuracy and method IV, the easiest to implement, seems
to be more sensitive to perturbations in the data.
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Method Parameter c = 0.0 c = 0.005 c = 0.01

I a = 0.08 0.0279 0.0294 0.0359
I1 8 = 0.008 0.0000 0.0048 0.0096
Ill 8 = 0.008 0.0005 0.0137 0.0274
IV Iy = 0.004 0.0302 0.0315 0.0349

Table 1. Error Norms as functions of c
in Example I with N = 500

Method Parameter c = 0.0 c = 0.005 c = 0.01

I a = 0.08 0.0275 0.0293 0.0365
II 8 = 0.008 0.0001 0.0048 0.0096
11 8 = 0.008 0.0005 0.0136 0.0273
IV 1z = 0.001 0.0174 0.0263 0.0431

Table 2. Error Norms as functions of c
in Example 2 with N = 500

Method Parameter c = 0.0 c = 0.005 c = 0.01

I a = 0.08 0.0615 0.0618 0.0641
II 8 = 0.008 0.0052 0.0052 0.0053
III 8 = 0.008 0.0295 0.0330 0.0411
IV -= 0.001 0.0648 0.0678 0. 0760

Table 3. Error Norms as functions of v
in Example 3 with N = 500

L
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ABSTRACT

The work is devoted to the theoretical analysis of contact melting by the migrating heat source with
an arbitrary shaped isothermal heating surface.After the substantiated simplification the governing equa-

tions are transformed to the convenient for engineering calculations relationships. Analytical solutions
are used for numerical prediction of optimal shape of the heating surface. Problem is investigeted for the
constant and for temperature dependent physical properties of the melt.

1. INTRODUCTION

Melting of solids by contact with a heating surface takes place in numerous natural and

technological processes. These processes are enumerated in the previous works (2, 4, 12-14, 22] devoted

to contact melting problem and are divided into two groups. In one group the melting material lies on the
heating surface and pressed against it by some external force (for instance, the force of the weight of the

melting material). This situation arises when an unfixed solid melts in an enclosure [1, 16, 221 and in other
contact melting devices used in industry (8]. Another group of applications involves a moving heat source

melting its way through the surrounding solid. This situation arises in such fields as welding [21], geology

[3], nuclear technology [9, 10] thermal drilling of rocks [4, 6, 18, 20] and glaciers [11, 17, 19]. Thermal dril-

ling is commonly recognized now as the most effective method of boring glaciers. Boring rocks, sands and

soil by thermnopenetrators is a relatively new method in mining engineering. It has some advantages in
comparison with traditional rotary drilling. The muNL considerable advantage of thermodrilling is that

three major facts of excavation (rock fracturing, debris removal and wall stabilization) are accomplished

in a single integrated operation.
This work is devoted to the theoretical analysis of the contact melting process by the moving heating

source with an arbitrary shaped isothermal heating surface.

2. ANALYSIS

2.1. The physical model and governing equations.

Obviously every technological process where contact melting occurs has its own specific character. In
particular ease of thermodriling. it is contact melting with a great specific load and heat energy, with ar-

[bitrary shaped heating surface. Thermopenctrators arc radially symmctric and in some cases ring-shaped, J
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[or toroidal, witha large central holefor forming and extracting the core sample [6]. A schematic diagram]

of the contact melting for the thermodrilling conditions is shown in Fig.1. Axisymmetric heater -1 is pen.

etrating into the melting solid -2 with the velocity V under the effect of applied external force F. The

thermopenetrator is separated from the solid with a layer of melt -3, flowing along the thin channel be-

tween the heating surface I h and solid-liquid interface 7 .. It is assumed that the solid-liquid interface

is a sharply defined surface and melting occurs precisely at temperature tn, melt flow is laminar and

two-dimensional. Molten layer is assumed to be incompressible Newtonian liquid with a temperature de-

pendent physical properties (except density). Experimental results [6, 15] indicated that the heat source ve-

locity attains its quasi-steady, constant value V soon after initiation of melting. This fact justifies the next

assumption of quasi-steady heat and mass transfer in the contact melting problem.

According to the physical model and assumptions enumerated above the governing differential equa-

tions of heat and mass transfer in the molten layer can be written as follows:

divU= 0

PL( V)U =-pLVp + divT

CLPL(U. VtL) = div(.LVtL) + M (1)

where T is the deviator part of the tensor of internal stresses; U, p, tL are the liquids velocity, pressure

and temperature respectively; 1 represents the dissipative terms in heat transfer equation; CL, PL, )L liq-

uid properties defimed in Nomenclature; the rest of the symbols arc standard.

It is convenient for further analysis to use two systems of coordinates fixed to the hc.tting surface: cy-

lindrical coordinates (r, z) and local orthogonal boundary layer coordinates S and are iodicated in Fig. 1.

Transforming (1) to non-dimensional form and using the similarity method in a preliminary analysis

the main dimensionless parameters and numbers are generated [7]:

pc=Vd St=C,(tm-t ) Kh (p, / 3 , C rdPe -,te ,KK=- - Re=Vpd/jIt I."

a, L 'PLWdJ CLMLCL
r= WP= PeK1K h  -p 2

Br= Pe h , K =A gd/W (2)Ma K M P
CLpL(t. - t ) K , =

All the quantities here are defined in mne Nomenclature. Each of the dimensionless numbers (2) has

an exact obvious physical meaning. In order to substa n iate the simplification of the governing equations

(1), the analysis of the values of these non-dimeniuoaal numbers for the concrete conditions of thermal

drilling of ice and rock was carried out. Dimensionless parameter Kh- 10-101 physically represents

the ratio of characteistic thickness of the molten layer and characteristic size of the heating surface d; cri-

terion Kg- 10-3 is the ratio of the characteristic mass force of the melt and external force; Reynolds

number Re- 106-10-4; Brinkman number Br- 10-5- 10- 4 represents the viscous dissipation of heat in

the molten layer, Pecklet number Pec 10-100; Stefan number Ste- 1-10; KI, K,- 1.
After neglecting terms of O(Kh, Kg, Re, Br) t% governing nondimensional equations of heat and

mass transfer in the molten layer will take the following form:

1 - (RHu )+ =0 (3)R' Os $ or4
H2dP _a 8u

H 2ds = 0(C" Ou ) (4)[ ds 0 al
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80 a 0 8 .10 a(5)

where ?I=', P=p/w , S=s/d , H=h/K, hd p=Lpl C=CL /C ,

rVp V PL tL -t=2.L/AL, R=r/d , u.=-, u = - , 0=- ,R=R(s)-cquation of generating lineVP, P Vp, t h -t,

r'h of heating surface I h; h = h(s) -thickness of the molten layer mersured along the internal normal to
Fh; v,, v, -longitude and transverse velocities in the molten layer; all the physical properties of liquid CL,

;L, PL are nondimensionalized by their values CL ';L 'tp1 at temperature t.;refcrence temperature

tb-t.) is determined after nondimensionalization of Stefans condition,

th -t, = PeK(t M - t') (6)

Here t** is initial temperature of melting material. In the equation (3) v=0 corresponds to the
ring-shaped penetrator with a large central hole. In this case since the thickness of the liquid film is of

O(Kh) it is possible to ignore the axially symmetric behaviour of heat and mass transfer and to consider (r,
z) as the Cartesian coordinates; v = I corresponds to the continuous heating surface without hole.

The boundary conditions in dimensionless form are following

At the heating surface h( = 0)
u,=u =0; 0=0h; (7)

h =(t h - t)/ (L,- tin); tis the unknown temperature on

At the solid-liquid interface rJn= 1)

u = 0; un= ds .. 0=0 (8)

1800 Q dR D0H1a/~,t =[ FQ + (dR)/Ste ] ; Q =(-' 4)1z. ; (9)

where 0,= (t,--t** / (t.-,*), t, is a temperature of the solid material,n is an external relatively tomolten

layer normal to 7 ..
For the pressure in the exit points of the molten layer s= s, and s= s2

P(s,) = P(s 2) = 0 (10)

Since when v= l it is only one exit point s= s, tiwn in this case s, = 0 is the critical point where u, = 0
dP/ds=0.

The assumption of quasi-stationary heat and mass transfer couses the equality of external force F

and the force of internal stresses in the molten layer. This condition with the defined accuracy of O(KB) in
non-dimensional form is [4]

2 2 - RPdR (11)R2 -R 2 -,

The function Q in Stefan condition (9) is the non-dimensional density of heat flux to the solid from
surface Y . It's value depends on the temperature distribution in the solid and is obtained from the solu-
tion of the heat transfer problem which is the same as the problem of temperature distribution in the sur-

rounding weldpool material [211:

L j
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0L 20+ a 2 ,0ao1
PC + - R~~ .v=O,1; (12)Oz Oz, R'OR R

OI. =1; lim 0=0; OIF =Of; (R,Z)=(r,z)/d; (13)
R

2 
+Z

2 
-.

O- is temperature distribution on surface ' f, formcd after melting (Fig.1). Problem (12) (13) was

solved in [4, 18] numerically by the boundary element method.

2.2. Analytical solutions

In [4] it was proved that boundary value problem (12), (13) admits an analytical solution as a func-

tion of one independent variable when and only when the generating curve rmof 7 . is parabola. In

parabolic coordinates a and T related to the coordinates R and Z by R = Ta, Z = 0.5(2-r 2) with boundary

conditions on.; m; "r,O,= , in infinity: T*oo, 0,-0, cquasion (12) has the following solution

- -I T') / Ei(--r 2 ), v= 1
2 ~ 2 m

0.PC PC (14)[erfc c T) /crfc( NeT )' v=0

where erfc(x)=2 c xp(- u2 )du, Ei(-x)- , ju du x>0

According the formulae (9) and (14) the heat flux distribuion on is

PC e 2 /a E{(- 2 ), v= 1

V 2 r 2 (4 - 'acerFc(a), v=0

where a2 = PCT. / 2 Taking into account the fact that the distance between a b and is the value

of O(Kh) we can rewrite (15) with the accuracy of O(Kh)
2. 2

-"2 dR/ aEi (-a2), v= 1

s '-' aerfc(a), v = 0

After simple transformation of equations (3) and (4) with invoked boundary conditions (7), (8) and

(10) the velocities and pressure distribution in the molten Layer are obtained
R'+ R'+  n" o -?I.

u + d, (17)

(R +1 R+1i 8 (R-R. )1
u =- ( ]R [ q] (18)

(v +I)R " as D
V R + 1  RV+1

P fR -3-- ds (19)
-V+l I R'H D

w h ere D f--- (u " o ) id , n o = of ' : i'

n n"t o n q -f : "o - q n

R. is a critical point which is determined by (19) and the boundary coudition P(s,)=0

L
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R+1 f Rds /f1 2 ds (20;]F H3D 'RvH3D

when v =I it is supposed that R.-= 0

According the assumption Oh= const the temperature distribution in the molten layer is- sought as a

function of one independent variable qj

0 = OM (21)

As follows from interfacial condition (9) in this case

H- = H const. (22)
ds

Last formulae (22) and (21) simplify equalities (18), (19)

n _IdR PN (23)
D ds

P=(v+)D R ds (24)

and heat transfer equation in the molten layer
PeHoWn dO d AGdc D d-- dO(AT (25)

Integration of this equation with the associated boundary conditions

dds01,-, =o0; -Lo1,.,I = ff; E= Q + - (26)

reduce to the following relationship

0(n)= EHff exp(--5 -? A dn)dn (27)

puting in (27) ? = 0 the temperature of the heating surface is determined

RI1 I-- = c7f1 xp(--- -f PC- drn)dl (28)

In order to simplify further computations assume that rh is specified by the equation Z = A(R-R.)2.

In this case heat flux distribution Q is determined by the equality (16), where

dR 1
ds j 7 4 A,2 (RR)R

P(s) introduction into (11) yields

~I V+1
R(R -+R )2 2-R )(V f 1- --- R R 2dR (29)

whereR=R. =0 if v=1

One of the most important characteristics of contact melting is the heat energy removal from the

heating surface to the melt. Combining heat energy definition in non-dimensional form

N = 2n4R (-
2 R ) dR

with the equation (27) we have

L
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c N (R2 - R-lEexp(- Pell f . (30)

The quantity of heat energy calculated according (30) excesses the minimum heat power N O ,.hich is
necessary to sustain the chosen mclting velocity V. In non-dimcnsional form

No = 7z(R 2 - R 2,)(1 + 1 / Ste)

Here N o in comparison with N docs not contain thccncrgy rate for heating melt and useless heat
dissipation in the surrounding thermopenetrator solid material.

The main scope of present paper is to elucidate the influence of the heating surface shape upon the
cffectivety of the contact melting process. Defining efficiency of the heating surface as a ratio P = N o / N
we'll have

+
- exp(-PeH/D dq) (31)

Equations (23), (24), (27)-(31) simulate heat and mass transfer processes in contact melting problem
with the accuracy of O(Kh). They are convenient for prediction of contact melting process for materials
with variable physical properties such as different kinds of rocks and sands.

When the physical properties of melt arc constant (for example in the case of ice melting) equations
(17), (23), (24), (27), (28), (30), (31). allows the considerable simplification.

I 1+1us6(R "+' _ R. (32
(v+ 1)R'H

dRu --d- 2/(3- 2j) (34)

1 2 +1 -RV + 1

P= V+1, Ir H 3 R-' ds (34)

0= Efecxp(PeI / 2 cxp[PeHii 3 (1 - 0.5q)]dq (35)

N - R )Exp(CH) (36)

I
S = ) exp(-TC (37)

S. RESULTS

Numerical prediction of u., U,, P, H, 0, P and other quantities of interest is carried out for ice and
rock thermodrilling conditions. All the calculations of rock melting arc based on equations (23), (24), (27)
-(31). Relatively complete description of basalt ph) sical properties at high temperature is available in [5,
6]. Non-linear equation (27) is solved numerically by the iteration procedure. After this other quantities
are obtained automatically in a view of equations (23), (24), (28)-(31). As the initial estimate of iterative
process solution (35) is chosen. When the ice boring process is investigated formulae (29), (32)- (37) are
used. The values of ice physical properties one can find for example in [4, 17, 19]. Effectiveness of the

[heating surface is estimated b the value of parameter /? It is shown in previous works [4, 17] that in com J
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Iparison with the other (cone-shaped, sphcre-shaped, etc.) thermopcnetrators of the same powcr output]
the parabolic shaped penetrator attains the highest mclting velocity, Therefore present paper is devoted to
more detail analysis of contact melting with parabolic heating surface. The cloigation of the sturface is

characterized by the value of shape parameter A. The results of numerically predicted efficiency as a func-
tion of A for different conditions of ice and rock melting are plotted in Fig. 2. Numerical results indicates
that for slow melting when heat transfer in the molten layer is of minor significance and in the contrary

the heat dissipation increases the flat heating surface (A < 1) is more effecfive. Vice versa for high speed
melting the heat energy rate in the melt is dominating in comparison with the dissipation in surrounding

solid material. So in this case the elongate form of heating surface is preferable. According the calcula-
tions presented in Fig.2 there is the interval for melting velocities when the definition of the optimal shape
is not trivial. For toroidal penetrator (v = 0)and ice melting conditions 20< Pc < 55; for non-coring

penetrator (v= 1) and rock melting conditions 40< Pc< 75. In order to find the maximum of P and the
corresponding value of A, the derivative of P with respect to A is calculated. When the problem is
non-linear and the physical properties of the melt depend on temperature the derivative is calculated
numerically; when p, c, Z are constants it is feasible to calculate /A analytically. In a view of relationship
(37) the equation #A = 0 for computation of the optimal A can be written is follows: - PeHA E - E'A
0.

This simple equation is solved by dividing segment in half method.

NOMENCLATURE

A - shape parameter of the heating surface; g - acceleration;

a - thermal diffusivity; h - melt layer thickness;

c - specific heat; L - latent melting heat;
d - characteristic size of heating device; P - pressure;

F -. external force; Q - heat flux density;

G - mass force;

r, z - cylindrical coordinates defined in Fig.1;

rl- internal radius of the heating device;
r2- external radius of the heating surface;

sj, si- coordinates of the end points of generating curve of the heating surface;

t - temperature; 1-velocity of the molten layer;

v,, v,- longitude and transverse velocities in the molten layer;
V - melting velocity;

s,,- longitudinal and transverse local coordinates in the molten layer defined in Fig. 1;
F

W-spccific axial load from heating device side (W 2 (r2_ 2
Sr)

/3- efficiency;
F- generating curve of surface .;
A- thermal conductivity;
pu-dynamic viscosity coefficient;
p- density-

L a, -- parabolic coordinates. 
j
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,Indices: 1
L - liquid phase; h - heating surface;

s - solid phase; m - melting surface;

* - critical point; - - value in infinite point.

All the non-dimensional parameters, numbers and functions are determined in the text: (2), (5), etc.
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zzS

Fig. 1. Schematic representation of the contact melting process: I-heating device, 2-melting solid,
3-moltcn layer.

A

1< -I

-Ste =. 3 p~

Fig. 2. Efficiency Pi as a function of shape parameter A.

a) lee boring conditions; v = 0, R . = 3.2 (ring shaped penetrator)
b) Rock bdring conditions; v = 1, R. = R, = 0 (non-coring penetrator)
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F DESIGN OF 3-DIMENSIONAL COMPLEX AIRPLANE CONFIGURATIONS. 1
WITH SPECIFIED PRESSURE DISTRIBUTION VIA OPTIMIZATION

Krzysztof Kubrynski
Technical University of Warsaw
Institute of Applied Mechanics

and Aviation Technology
ul. Nowowiejska 24
00-665 Warsaw - POLAND

ABSTRACT: A subcritical panel method applied to flow analysis and
aerodynamic design of complex aircraft configurations is presented.
The analysis method is based on linearized, compressible, subsonic flow
equations and indirect Dirichlet boundary conditions. Quadratic dipol
and linear source distribution on flat panels are applied.
In the case of aerodynamic design the geometry which minimizes differences
between design and actual pressure distribution is found iteratively using
numerical optimization technique. Geometry modifications are modelled by
surface transpiration concept. Constraints in respect to resulting geometry
can be specified. A number of complex 3-dimensional design examples are
presented. The software is adopted to personal computers, and as result an
unexpected low cost of computations is obtained.

INTRODUCTION

One of the most important task in aerodynamic design is such airplane shape

definition which fulfills the following requirements: low CD, high MADD and

CLH X, appropriate boundary layer stability and stall progression, elimination

of shock waves etc. This, however, depends on appropriate pressure

distribution on the surface. It is extremely difficult to fulfill all these

requirements for complex, 3-dimensional airplane configurations where strong

interference effects occur between aerodynamically close coupled elements.

Optimal design of each element does not lead to optimum of configuration

because of adverse interference effects. But in principle It is possible to

design such configurations with neutral or even favorable interference, where

interaction between airplane components gives benefits and leads to better

global characteristics then those of separated elements. It is impossible to

realize such a configuration only on the ground of experimental technique.

Computational methods of aerodynamics, which have developed quickly during

last 30 years enable, in connection with the aerodynamic concepts worked out

at this time ("roof-top", "peaky" etc.), to realize many interesting designs.

The problem can be .illustrated by wing-nacelle-pylon configuration. In the

past the nacelles were shaped as axisymmetrical body and mounted to swept wing

by plane pylons. A strong adverse interference occurs leading to loss in
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risobar sweepi higher local Mach numbers and shock waves, losses in lift

coefficient at design angle of attack etc., creating the lower aerodynamic

efficiency. Later the method of designing for neutral interference was worked

out, where nacelle and pylon were shaped along stream lines of isolated wing

in order to minimize interference. It is difficult however, even now, to

design such configurations with favorable interference.

Slightly simplifying the problem we can consider three kinds of design

treatments in aerodynamics using computational methods:

1. Design by trial and error method

2. Direct optimization method

3. Inverse design method

The first is direct transformation of the wind-tunnel technique on the

computational ground, where wind-tunnel Is replaced by computational system

and the process of "aerodynamic model manufacture" and "testing" is

significantly cheaper and faster. Experienced aerodynamicist analyses

results, specifies the needed modifications and the process Is repeated until

satisfactory computational results are obtained.

In the second method geometry which minimizes aerodynamic object function

(such as drag) and fulfills additional constraints is found directly without

external detailed considerations about flow properties. This method,

conceptually very attractive and fully automated, can not be actually

perfdrmed in the case of complex configurations because of very high cost

and many times too low accuracy of up-to the date flow analysis methods which

lead to so called "numerical noise" and make impossible to find real solution.

The third method is actually the most effective and refined method

acceptable in practice. It consists of two steps. First is such a pressure

distribution specification which fulfills aerodynamic requirements. In the

second step the geometry corresponding to this pressure is calculated using

inverse method. It Is obvious that the possession of the appropriate inverse

method is worthy. The method presented in the paper is actually probably the

most general inverse method applied to subsonic flow region, which allows to

design of real complex configurations even via interference effects.

FLOW ANALYSIS

The method is based on linearized theory of compressible flow [1].

The Prandtl-Glauert equation

2 P + +2
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The linearized mass flux boundary conditions on external surface are applied

lW-n = (V + w)*n = in/p (2)

and express the intensity of mass outflow through the surface.

w is the perturbation mass flux vector defined by

I w = (g 2 x, PyWz ) 1(3)

The second order pressure formula (assuming V = (1,0,0)]

CP2 = -2vx (-x +(y +( (4)

is applied to find aerodynamic forces and moments, and Isentropic

formula Is used to express pressure distribution on the surface:

Cp =- I I +k-1M2 1- V V~kk-1- 1(5)C kMc f

Applying Greens Theorem to the flowfield the perturbation

velocity potential on the surface can be expressed as:

1 (t/-V n) 2 r" .n 1 n(6)
Sb Pr , + 4'hr rS

where <V> is the Jump of potential across the wake and E is function of

position (respectively: 1, 1/2 and 0 for P in the flowfleld, on the surface

and outside the flowfield). Equation (6) is solved by panel method based on

quadratic dipol and linear source distribution on flat panels and indirect

Dirichlet boundary conditions (zero perturbation potential is specified on the

internal side of surface). Control points and unknown singularity parameters

are located in panel center of gravity. Jump of potential across the wake is

determined by Kutta condition: flow behind the trailing edge of lifting

surface must be tangent to trailing edge bisector. Finally the integral

equation (6) is replaced by system of linear equations of the form:

FP '~ 1 0] '
[A] j--j = - - -- [B] .ihs/P-VO. n} (7)

L J
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Fwhich is solved to obtain the perturbation potential on the surface -and juimp ]
of potential across the wake. Velocity distribution on the surface is

obtained by 'numerical differentiation of perturbation potential and- adding

the free-stream contribution. In, the local panel coordinate system:

V = v/at + V .t
t 0 ,1(8)

V = W/as + V .s

INVERSE METHOD

The inverse problem is solved in the present method via optimization.

The method is extension of the previous design method of the author.

The requested geometry of configuration is searched in a form of sum of the

initial geometry and linear combination of basic design shapes:

ND
GEOMETRY = INITIAL GEOMETRY + Xio (i-th BASIC SHAPE) (9)

Coefficients X. are found from the condition of minimizing1

the error in pressure distribution:

NP

E = Wo (CPJCpD)2  (10)

j=1

where: W - weight function of j-th point

CpD _ design pressure coefficient

Cp3 - its actual value

using numerical optimization technique.

Direct application of panel method to find the object function brings

the high cost of computations. In the presented method the basic design

shapes are modelled by surface transpiration. The mass flux through the

surface which shift the stream surface with the distance h normal to the

initial surface is given by:

1 a (pUh) a (pVh)
+R PW 'I (11)

The mean value of the transpiration over the panel is obtained by mass flux

Lbalance in the volume enclosed by body surface and modelled stream surface. j
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F 1.

Fig.i Mass balance

over panel area

rn4  iA ..

The incremental potential distribution due to surface transpiration

(i-th basic shape) is calculated from linear equations system similar to (7):

[ A] ----- = - [B {wTR}, (12)

Potential on the new geometry is expressed as the sum of initial potential

distribution and linear combination of incremental potential distribution due

to basic shapes. The new velocity distribution is calculated using eq. (7)

with new potential value and unit tangent vectors taken from the new geometry.

Geometry redefinition is performed directly using eq. (9). The optimization

is performed by quadratic programing method. Additionally geometrical

constraints are introduced via penalty function. Gradient and Hessian of

object and penalty functions are calculated analytically which lead to high

accuracy and low cost. Because of nonlinear nature of the design problem it

is solved iteratively using geometry obtained after actual design iteration as

initial in the next one. Block diagram of the method is shown on the Fig. 2.

COMPUTER CODE

The method described L.,jve was coded in FORTRAN 77 language and implemented

on PC-Computers. Because of hardware limitations it is performed as a

package of programs. All basic parts of the method are performed by

separate co:nputer program, which are sequentially started from batch file.

The software package consists of 13 programs including two methods of

solution of linear equations system (iterative and block Crout

decomposition) and post-processing program. The iterative method of

solution performs matrix modification and makes possible to use this method

gven when other iterative methods do not provide the convergence.

It is possible to use up to 1200 body panels, 500 wake panels, 80 Kutta

points, 1280 unknown singularity parameters (plus symmetry condition), and jL



268
Third, Intermaoi6nol Conference on Invere Design-Concps cind-Opimization in Engineering Sciences
(CIDES-,1.Editor:G.S.DuhirbvichkWoshin ton D.C..Octrber 23-251991

[INITIAL GEOMETRY I  .

"FLOW ANALYSIS"(

1. Cp , W Cp an Yes

2. Geometrical - EOMETR SP]
constraints

N Fig.2 Block diagram
Basic shapes jTranspiration due l  E
Ispecification l" to basic shapes of the design method

Incremental potential E
distributionIH1 M

"OPTIMIZATION"E
T
R

GEOMETRY REDEFINITION Y

63 basic design shapes. Flow analysis for PC-386/25MHz and 1000 panels (plus

symmetry) took about 25'-40' if using iterative method of solution and about

60' if Crout decomposition method is used. Design process took about 12' for

40 basic design shapes using Crout method. Using computer 486 computing time

is about 50% shorter. Cost of such computations is unexpectedly low.

RESULTS

Flow analysis. To show efficiency and accuracy of the method results of

analysis of test cases from AGARD AG-241 are shown on Fig. 4 and 5. Results

for RAE WING and STRAKED WING with NACA 0002 profile is compared with

Datum Results of Rubbert and Roberts.

560 panels were used (40x14) for RAE WING and 640 (40x16) for STRAXED WING.

Computing time on PC-386/25MHz respectively 10' (iter)/16.5' (Crout) and

14'/23'. It is seen excellent agreement with compared methods.

Full aircraft configuration design. It consists of wing, body, tail and

rear mounted nacelle and pylon. The geometry of the configuration is shown

on Fig.6. A new pressure distribution (of "roof-top" type) is specified on

the wing upper surface. At all points of pylon where initial negative pressure

exceeds Cp = -0.5 this value was specified as design one.LJ
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F38 basic design-shapes of spl.ine-support type were specified. The idea of ]
this type of shapes is shown on Fig. 3. Node lines on the surface in both

directions are specified and movement of the node of such network in

specified direction corresponds to the desired shape function. To find

movement of other points of the surface the interpolation spline Is used.

The shape functions used correspond to:

-changes of upper surface section of the wing at four control stati6ns

(wing-body-junction, q = 0.3, 0.5 and 1.0) corresponding to vertical

displacement of points with max. laying at 75%, 55%, 40%, 25%, 15%, 9% and

4% of arc length (measured from leading edge to trailing edge)

-changes of wing twist at wing-body-junction, 7 = 0.5 and 1.0

-changes of fuselage width in the pylon region with max. at four stations

-Changes of nacelle width in the pylon region with max. at three stations

Fig.3 The idea

of spline support

basic shapes

Geometrical constraints used:

-distance between network points near the trailing edge (for zontrol the

trailing angle)

-distance between network points near the max thickness (for control the

thickness)

-distance t' e network points near the leading edge (for control the

leading edge radius)

-distance (in vertical direction) between leading edge and trailing edge

(for control twist) at three control stations

-distance between points of pylon (at pylon-fuselage intersection) and

symmetry plane (for control fuselage shape) at three stations

-distance between points of pylon (at pylon-nacelle intersection) and

symmetry plane (for control pylon shape) at three stations.

1042 body panels, 72 wake panels and 1068 unknown singularity parameters for

half geometry were used. Computing time using PC-386/25: analysis 78', design

cycle 14'. Isobar pattern on the initial geometry and after four designL
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Fiterations are shown on Fig.7. Prdssure distribution at four wing sections

before and after .designing are presented on FIg.8 and. pressure distribution on

the pylon on Fig.9. The shape of body-nacelle region and isobar pattern is

shown on Fig. 10. The region of higher negative pressure occurs on the

fuselage and nacelle in front of pylon. Adding two shape functions modifying

fuselage in front of the pylon and specifying additional points with design

pressure, the result (after 4 iterations) as on Fig. 11 can be obtained.

The convergence history of the design process is shown on Fig. 12.

Wing-body-underwing nacelle configuratlon. The geometry of the configuration

and details of nacelle region are shown on Fig.13. 1160 body panels, 104 wake

panels and 1-183 unknowns were used. The pressure on the wing-body alone

configuration was calculated. Results are shown on Fig. 14a (lower and upper

surface respectively). Pressure distribution obtained for this configuration

is used as design pressure for wing-body-nacelle. Adding plane pylon and

axlsymmetrlcal nacelle the new pressure distribution and isobar pattern are

obtained: Fig.14b. Isobar pattern on the wing after four design iterations is

shokm on Fig. 14c, shape of pylon and nacelle on Fig. 15 and pressure at

subsequent wing sections before and after designing on Fig.16. Shape of pylon

section before and after designing Is seen on Fig.17. 38 basic design shapes

of spline-support type were used. Wing was changed at three control stations:

= 0.4, 0.5 and 0.6. Four points on upper surface (x/c=0.03, 0.11, 0.27 and

0.50) five points on lower surface (x/c = 0.06, 0.17, 0.33, 0.50 and 0.72) and

twist at each of this stations can vary. Additionally four points of upper

nacelle contour (x/L - 0.38, 0.50, 0.63 and 0.81) and four points of pylon

mean line tx/c = 0.25, 0.50 0.75 and 1.00) were changed. The constraints, in

respect to wing thickness and twist, nacelle shape and pylon modification,

were specified. It should be noted that duspite the constraints used are not

very restrictive some of them are active. As result, for example, pylon has

nonzero side force (it had tendency to bend more). Convergence history is

shown ou Fig. 18. It is or value to show some aerodynamic coefficient for the

ce'nf iguration:

Cli Cl cl, Cm
wlng na.'-pyl total total

wing-body alone 0.5098 - 0.606 -0.1463

In1tial 0.4772 0.0051 0.575 -0.1482
designed 0.50S -0.0008 0.605 -0.1433

Computing time using FC-385/25: flow analysis 84', inverse cycle 15'.L!
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Design of transonic winm. The research wing for jet-trainer type aircraft

was designed via subcritical equivalent pressure distribution concept [31 by

the author as a part of research investigations on supercritlcal wing

performed at Aviation Institute in Warsaw (unpublished Report of Aviation

Institute in Warsaw). The supercrltical wing section (of slightly

peaky-type pressure distribution) was designed using finite-difference

method. Equivalent subcritical pressure distribution for swept wing (sweep

angle of leading edge 20.70, at 25% chord 17.30) was calculated and used as

design pressure on the upper surface of the wing. The originality of the

method consist in including the off-design characteristics. By modifying

constraints it was forced max. pressure peak at high angle of attack and

low Mach number at about n = 0.4, which suggest separation first at this

station. If max negative pressure was too high at the station under

consideration, the higher leading edge radius was enforced by constraints

(worsening, of course, the pressure distribution) and vice versa. 28 basic

design shapes were used: five kinds of changes of thickness distribution

along the chord at five control stations along the span and twist at three

stations. The geometrical constraints in respect to max thickness,

trailing edge angle, leading edge radius and twist are utilized.

480 body panels, 24 wake panels and 492 unknown singularity parameters were

used. The block diagram of the design process can be introduced as follow:

[INITIAL GEOMETRY1

ANALYSIS AT DESIGN POINT"(

Yes
ICp's and GEOMETRY O.K. P-1I STOP N

ININ0 e t
Cp-DES I I1 w e

constraints ')DESIGN" e
basic shapes D r

e

IANALYSIS at high (x, low Ma CONSTRAINTS i

90

CTm distribution O.K. N n

Yes

Computing time (386/25): analysis 9' (Crout), 5' (Iter). In each design

iteration the flow, at high a, was calculated about 3 times. Resulting isobar

L j
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Fpattern and pressure distribution at three wing sections are presented on 
]

Fig.19. Geometrical parameters of the resulting wing are shown on Fig.20.

Quite unexpected for swept wing-RLE distribution along the span is seen. Max

of the leading edge radius occurs at 80% of semispan. Max of pressure peak

(a=12, Ma=0.2) occurs at Q = 0.40. The drag divergence Mach number

obtained in wind tunnel tests is shown on Fig.22 and beginning of

separation on Fig.23 (unpublished Report of Aviation Institute in Warsaw).

It is seen good agreement with expectation.

CONCLUDING REMARKS

The method presented above shows great versatility in the case of design of

real, complex configurations. It has nearly no restrictions in respect to

the complexity of the geometry. The major limitation is the lack of

possibility to take into account modification of planform of the wing and

necessity to fix leading edge point (twist can be changed only by moving

vertically trailing edge point). It is possible to take into account

Interference effects In designing, that allows to obtain specified pressure

distribution on one element by changing geometry of the other.

Recently the method has been extended to the case of multi-point optimization:

the pressure distribution on different parts of the surface can be specified

for different angles of attack and the design process is performed at once.

The method is exceptionally cheap and efficient because of implementation

on PC-computers. The possibility to take into accounts some

characteristics at off-design conditions via constrains was shown also.
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Abstract
Some ideas for using hodograph theory, mapping techniques and method of characteristics to formu-
late typical aerodynamic design boundary value problems are developed. Inverse method of charac-
teristics is shown to be a fast tool for design of transonic flow elements as well as supersonic flows
with given shock waves.

Introduction

This paper is intended to illustrate a revitalization of classical tools of theoretical aerodynamics for
use on modem graphic workstation computers presently available to the design engineer:

The theoretical methods have their origins in the time before large scale numerical computing be-
came the standard approach for analyzing aerodynamic performance, about two decades ago these
tools were already operational for practical aerodynamic tasks. Transonic flows then posed challeng-
ing problems and analytical mathematical modelling was used to gain insight into various theoretical
and applied questions resulting from nonlinear model equations. The "Hodograph Method" gave an-
swers to many of such type problems. Similarly, the "Method of Charateristics" yielded practical re-
suits. Combination of both methods, more recently, has permitted inverse - or at least indirect -
formulation and solution of aerodynamic design problenis.

Later, numerical methods became more important because of their general applicability but frequent-
ly they give only poor insight into a mathematical model underlying a described phenomenon. The
previous hodograph approach was somewhat complicated because of mapping procedures, but results
still serve as test cases for numerical methods.

Nowadays, while most of the successful analytical methods are used only for educational purposes,
we witness another type of tool emerging from developments in computer technology: Graphic
Workstations and even PC's provide powerful computation, illustration and documentation of results
to the model equations for fast aero analysis and design. Interactive methods are being developed to
provide a strong coupling of computer power and speed with the design engineer's experience and
strategies to obtain his design goals: For many applications we seem to have the knowledge base and
computer hardware to develop a variety of what may be called "Aerodynamic Expert Systems".

* ) Senior Research Scientist. **) Visiting Professor, Permanent Address: 4b Ir k t & JAC k
Beijing University of Aeronautics and Astronautics, Beijing, China
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In this situation we may want to recall classical "pre-CFD" methods because, if implemented to those
fast graphical desktop computers, they might be modernized and improved to easily give fast first
steps for aerodynamic design and optimization, and last not least to serve as educational tools.

In the present paper we illustrate the idea of combining fast classical aero methods with most recent
computer and software technology by using hodograph formulations and characteristics to obtain
some well known and some new plane and axisymmetric transonic and supersonic flow elements.
The fast computation and powerful graphic evaluation of results invite experimenting with conceptu-
al extensions: Here the hodograph method is extended to axisymmetric flows and a method of char-
acteristics for axisymmetric rotational flows will be presented and proposed for use of designing
more general three-dimensional flows.

Hodograph-based methods for transonic flows

The following review of an extended hodograph method is focused on transonic applications. For
two-dimensional isentropic flow this approach is wellknown in the literature, here the illustration is
carried out for plane flow and extended to small perturbation axisymmetric transonic flow - an option
w idely unknown because the main purpose of the hodograph, linearity, obviously cannot be obtained
for axisymrnetric flow.

Potential flow models

Isentropic flow assumptions result in a system of PDEs for potential c? and streamfunction T with D
and Q suitably dimensionless density and velocity, and flow angle 15 and velocity Q independent
variables:

I) 1 (M2- PI)

)(1)

Rheograph transformation: Beltrami equat'ns

Here we use a modification of the hodograph variables: System (1) is transformed by using the
Prandtl - Meyer angle

-1 - (2)

(Q = 1)

as one independent variable instead of the velocity Q. The basic PDEs become
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OV = jK'F.0
(3)

0:10 = KT V

with j = -1 representing subsonic flow (where v < 0) and j = 1 for supersonic flow (where v >-O). The
coefficient

K M-1 (4)
1= D

is, for isoenergetic flow and with (2), a function of v only. So far any hodograph problem formulation

is just a matter of stretching from a (Q, i) - plane to a (v, *) - plane.

The technique stressed here involves further elliptic or hyperbolic mapping of the variables (v, ")

VS = 15t (5)

VI = j* s

which results in a transformation of (3) to become

DS = JK~t (6)

Obt = KT~S

Both (3) and (6), and also the Cauchy-Riemann or wave equations (5) are more generally named Bel-
trami equations. With K now a function of s and t this system of PDEs is linear. The first author has
made extensive use of it for transonic airfoil design [1, 2].

For the purpose of illustrating a generalization to axisymmetric flow, we use here the small perturba-
tion version of (5) and (6), with a notation

v-U

-VyP

(7)
Cb~X

(D - y' +

where for plane 2D flow p, = 0. Replacing the coefficient K by its leading term near sonic conditions,
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jK- W2 (8)

with P2= 1/3 results in the near sonic version of the systems (5) and (6), the compatibility-relations

vs jYP'Ut

(9)

vt= YP, Us

and characteristic equations

XS,= UP y'

(10)

Now we see an elegant symmetry of these two coupled pairs of equations, each modeling a general-
ized axially symmetric potential, (3]. We can distinguish between various types of flow, depending
on the parameters j, pIand P2. Linear subsonic (j = -1) or supersonic (j = i) flow is described by p2 =
0, while transonic flow requires p2 = 1/3, withj both -I and +1 for mixed type flow. With Pl = 0 or 1
we have plane.2D or axisymmetric flow, respectively. Mapping in various aero or fluid dynamics
case studies can so be reduced to one generalized system of basic equations [4, 5]. Any one of Pi or
P2 being equal to zero yields linear equations, but for near-sonic axisymmetric flow a weak nonlin-
earity persists, which seems to be the reason why this formulation has not been used for aerodynamic
problems, except in the one work by Hassan [6].

Fig. 1: Rheograph or Characteristics plane: /Elliptic (shaded) and hyperbolic (cross-hatched)
domain for mixed type model equations

Self-similar solutions

We see the relation of Beltrami equations to conformal and characteristic mapping: singular solutions
in classical hydromechanics have helped to understand many aerodynamic phenomena, so we wish to
use the system for axisymmetric near-sonic flow also for solving some of its typical features.

Figure 1 illustrates the working plane (s, t): neither physical plane (X, Y) nor hodograph plane (U,
V), it is suited for a definition of boundary and initial value problems which require a parametric for-
mulation. In transonic flows, the mixed elliptic/hyperbolic type subdomains require contact along the
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mapped sonic line, here suitably fixed at s = O. Earlier applications and illustrations [5] explain the
use of the name "Rheograph" and "Characteristics Plane".

Some classical and many new phenomena may be modeled from the general harmonic set of self-
similar solutions in polar coordinates

U = r (.P)

V r rn+p1
' bV r k(cp)

(11)

which require only solving a set of four coupled ODEs for the generalized harmonic functions h, k, f
and g, with two free parameters n and b.

2.O . .. .. .

,../..,M,. Y,,,_

Functions Ii, g, k,f

to- -

0.0 l

.. ...... ....d..

-1.6 -7.1 -0.6 -01 0.4

Fig. 2: Quasi-harmonic functions for far-field singularity U,V(X,Y) modeling flow past a body
of revolution in sonic free-stream Mach = I

Example.: Guderley's far-field singularity of an axisymmetric body in sonic flow

M. Klein [7] has investigated these coupled potential flow problems calculating some plane and axi-
symmetric cases with different exponents n, b. This was done prior to using some gained knowledge
for setting up more general boundary/initial value problems for numerical solution of (9) and (10)
with a Poisson solver and the method of characteristics on a graphic workstation. One case studied in
detail is the solution for simulating the flow past a body of revolution in sonic free-stream. This is a
classical transonic problem first solved by Guderley 1954 [8] and elegantly confirmed by MUller &
Matschat 1964 [9]. Their work suggests use of (11) with a ratio of the exponents b/n = - 7/9. In fact, it
is just this ratio which yields a physically reasonable solution.

I
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Figure 2 illustrates the result: Graphic CFD postprocessing software is used to show the U and V dis-
tribudon in the physical meridional plane (X, Y). This example may be used to illustrate the use of
working in the Rheograph plane, to understand flow details with nonlinear model equations better
and to have more freedom to suitably model boundary values. In transonic flow, meaningful solu-
tions frequently can only be obtained by formulating boundary conditions in an indirect, inverse way,
- this is the basic reason why some practical design problems are easier solved in inverse mode.

For the following transonic 2D example (P, = 0) we return to the systems (5) and (6), the Rheograph
equivalent of the 2D full potential equation.

Example: 2D transonic nozzle exit

Equations (5) and (6) for supersonic flow j = 1 transform into compatibility relations

1 = const

(12)

dv const

and characteristic equations

0) 1] = const K
(13)

dTI 1
T4) = const

which are the basis for a rapid linear method of characteristics. Implemented on a graphic worksta-
tion, solutions may be obtained and visualized extremely fast, we use the method to set up a knowl-
edge base for interactive transonic design expert systems with advanced graphic pre- and
postprocessing. Flexible geometry input for boundary conditions was used by Gentner [10] to define
a 2D sonic throat and the downstream accelerated exit flow. With initial data for Mach number, flow
angle and physical coordinates along the t-axis (Fig. 1) a first calculation determines the solution of
(12) and with K(v(4,ri)) available, the second step is the solution of (13).

Figure3 once more stresses the difference between hodograph and Rheograph or Characteristics
plane: The flow structure may map into a multivalued hodograph, while the Rheograph may be con-
trolled to show a single-valued characteristics grid.

The result with a non-symmetrical exit contour designed by prescribing velocity distribution along
the nozzle axis is depicted in Figure 4. The idea here was the combination of (known and well-devel-
oped) potential flow modeling with mapping transformations based on hodograph theory (also
known but considered complicated), and the use of powerful workstations (helping with rapid com-
putation and graphic visualization). The above isentropic model equations are either linear or weakly
nonlinear. In the following, design problems involving non-isentropic flow will also be solved by the
method of characteristics.
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Fig. 3: Unfolding the multi-valued mapping of a Laval-nozzle (a) supersonic hodograph (b, c) to
single-valued triangular domains (c) in the Rheograph plane

- - - - - - - - - - - - - - - - - -----------------

Fig. 4: Laval nozzle exit designed from sonic line Cauchy data and velocity distribution (Mach,
flow angle) along a curved axis. Color graphics illustrate stream function / contour.
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Supersonic flows with controlled shock waves

Before we apply the method of characteristics to a problem involving oblique shocks, it should be il-
lustrated that given initial data in the Rheograph working plane dire,_:I, relate to Cauchy data in the
physical plane, the marching direction starting from AB and progressing towards C runs approxi-
mately normal to the resulting local flow direction, Fig. 5. We call this -id related numerical ap-
proaches to compute the flow field "Cross - (stream) Marching". Ths will be useful for supersonic
design applications where we seek to control the shape and strength of occurring shock waves.

t <'c <

Al
tB < t < tA: X
U *) /

X'() Y1 A/Y*t C /~) ~

Y W

B

Fig. 5: Cauchy Initial data in characteristics plane (s, t) and in physical plane (X, Y)

Cross-Marching from given shock waves

A
As cat easily be seen from a flow field with an oblique shock wave and its supersonic post-shock
characteristics, there is only the possibility of Cross-Marching since the initial data do not allow for
marching downstream, Fig. 6. A portion AB of oblique shock wave determines a flow field ABC and
a limited portion AD of the contour compatible with the given shock wave. A larger region of depen-
dence ABEF and contour ADG are obtained if also the flow at a segment BE at the axial exit station
is prescribed, see [11] for some remarks about numerical consequences of such given input.

C F

A C

a b c
Fig. 6: Basic steps of downstream marching (a) and Cross-Marching (b), depending on initial
data curve AB. Computing the flow behind oblique shocks (c) requires Cross-Marching.
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NumericaJ methods of characteristics have been developed for plane and axisymmetric , for isentrop-
ic and rotational flows. Prescribing arbitrary shock waves-results in rotational flow because of shock
curvature. Cauchy initial data for flow field computation therefore require coordinates, velocity com-
ponents and entropy distribution along the prescribed shock geometry. For Cross-Marching (Fig. 6b),
the iterative calculation of entropy convection along the streamlines requires an extrapolation of data
BD- C, while for the usual downstream marching (Fig. 6a) an interpolation of data A-*D+-B is
needed.

The following two examples were obtained with a new numerical Cross-Marching method of charac-
teristics for axisymmetric isentropic or rotational flow by the second author [12]. A flexible input ge-
ometry generator and workstation implementation lay ground for further extensions and use for
aerodynamic design tasks.

Example: Segment of a conical flow field

As a first example for the new method of characteristics a part of the flow field past a circular cone is
computed. Input data are the upstream Mach number, a set of coordinates of and post-shock condi-
tions behind the given conical shock wave with given angle. Fig. 7 illustrates the characteristic grid, a
selected integrated streamline and reveals a limit line singularity along a ray through the cone vertex,
well within the solid cone which is compatible with the shock cone and Mach number. The case is
well-suited for checking the accuracy in comparison with the solution of the Taylor-Maccoll ODE;
graphic visualization of the Mach number and flow angle distribution must show constant values
along rays through the cone vertex, though its location is not part of the input data.

b c

Fig. 7: Ideal gas (y 1.4) flow past a circular cone. Given Mach - 2, shock angle = 450 (com-
patible with a solid cone of 27.320). Choice of shock segment size relative to axial distance:
Characteristics grid (a) with or (b) without limit cone of ~163". Every third grid line shown.
Color graphics (iso - Mach) for flow field conicity check (c).

Computation time on a Sun Sparc Station: 6 seconds.
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EXaple: Segment of aflow field downstream of a curved shock

A slight variation of the input shock segment geometry brings rotation to the flow field downstream
of the shock. Color graphic visualization of the velocity and pressure distribution shows a strong de-
viation from conical structure, Fig. 8.

ab c

Fig. 8: Flow with a curved shock wave. Given Mach = 2, shock angle varies from 500 to 450 .

Characteristics grid, surface streamline (a). Color graphics for iso-Mach (b) and iso-flow angle (c)

Design of three-dimensional flow fields

...1 A' ,",,-,'-', V, FA-",U andU I symtric inviscid flow fcisfrue"^::".. .....
* .l'. ~A~J~UAA~A8 JLjJU &~ ~ y 11IC~w..f .A i ,LAII&AI6/u&IL iA '.,vv pI t4 L.,Ii

generated by three-dimensional bodies in supersonic flow has been used since about thrce decades
when Nonweiler [13] created "'ie first "waveriders". In recent years renewed interest origina:ed in
such configurations for generic lifting aerospace transport vehicles and supersonic inlet shapes [14].
The first author recently contributed an idea to this research which is aimed in generalizations of
waverider shape definition by applying conical flow solutions with constant shock strength but axial
distance of the shock segments varying along span [11]. The idea is based on the assumption of a lo-
cal axisymmetry in every 3D flow, which is well defined in an"osculating plane" if the shock wave is
known, Fig. 9. The method to generate three-dimensional configurations requires little more effort
than evaluating one Taylor-Maccol conical flow solution. Only the Mach number, shock angle, lead-
ing edge and shock profile in the exit plane need to be prescribed. Based on this method a very rapid
interactive design code was developed by Center et al [15]. Numerical analysis with an Euler code
shows a striking agreement of the numerically captured shock location with the design solution,
which makes it worthwhile to further develop such techniques.

The method of characteristics with Cross-Marching developed here may be used for such further de-
velopment, with the possibility of exploiting also rotational flow fields to find 3D body contours.
This method is then equivalent to solve the 3D Euler equations in an inverse design mode, rapidly
carried out in an interactive fashion on the workstation.
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Z

X

X

Fig. 9: Local conicity in osculating plane of a flow behind given rule surface shock wave: Design
of generalized super/hypersonic waveriders.

Conclusion

We have tried to illustrate some ideas to extend classical theoretical methods for the aerodynamics of
inviscid, compressible flows. The purpose is an implementation of these tools to develop software on
fast modem workstation computers which enables the design aerodynami.cist to perform rapid early

ot, - -:1 e1~0 * -flulO *r."lAsa.....ge , de.ig .t ,ith arodyna ic expert systems, but aso t+ develop these techni ..... towa
convincing educational programs for students. Transonic and supersonic aerodynamics require in-
verse problem formulations if flow properties should be used optimally for design goals. This was
shown using the method of characteristics for inverse applications.
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SUPERCRITICAL BLADE DESIGN ON STREAM SURFACES OF REVOLUTION

WITH AN INVERSE METHOD
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Abstract

The described method solves the inverse problem for supercritical
blade-to-blade flow on stream surfaces of revolution with variable
radius and variable stream surface thickness in a relative system.
Some aspects of shockless design and of leading edge resolution in
the numerical procedure are depicted. Some supercritical compres-
sor cascades were designed and their complete flow field results
were compared with computations of two different analysis methods.

Nomenclature

A area Subscripts:
BN blade number
La Laval number 1 upstream
R radius of stream surface 2 downstream
W magnitude of velocity vector BW blade wake
d profile thickness SW side wall
h stream surface thickness ax axial
1 profile chord length m meridional
m meridional coordinate u circumferential
s arc length Um Transition
t cascade pitch
w velocity vector
x chord coordinate
z axial coordinate
r circulation
0 axial velocity density ratio
o circumferential angle
13 flow angle
C inclination angle of stream surface
p density
ppotential function
0 stream function
W angular velocity
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INTRODUCTION

Increasing requirements on turbomachines concerning efficiency,
compact construction and density of power lead to aerodynamically
highly loaded blades. The admissible blade load and the profile
losses are determined by the boundary layer development. High
pressure ratios per stage and high turning of the flow increase
the risk of boundary layer separation with the result of strongly
growing losses. This problem is intensified by the risk of arising
compression shocks. They are caused by the supercritical through-
flow (with local supersonic regions), which is necessary for high
mass flow density.

In regions with pressure rise, boundary layer separation can only
be avoided by careful blade profiling for flow with minimum loss.
In the past, turbomachinery bladings have mostly been designed
with the aid of profile families. But in this way, depending on
the plurality of parameters, a loss minimization is not possible.
Especially in the transonic velocity region this procedure is in-
sufficient since shockfree solutions can be found with only poor
chances by iterative contour variation. In this region of maximum
mass flow density very small variations of the geometry are con-
nected with very high changes in the flow velocity. Therefore, it
is convenient to prescribe the physical quantity, where the great
changes appear, and to calculate the small but important varia-
tions of the geometry.

This alternative is given by inverse design: Starting from a pre-
scribed shockfree velocity distribution, the corresponding profile
contour is calculated numerically. By this means a perfect tai-
loring of the blade to the required turning problem is possible.

Up to now a perfect three-dimensional inverse design of flow
fields in turbomachines is not executed since this problem is
quite overdetermined. At present a standard procedure is to start
a quasi three-dimensional computation by calculating the flow on
meridional planes (S2 ) by an analysis code (duct- or through-flow)
to get the starting values of the calculation on several blade-to-
blade planes (S1 ) distributed along the blade height.

This multi-section design of the blade can be realized by inverse
computation. The following inverse computation method is an ex-
tension of the former cylindrical version (1,2] to the design on
stream surfaces of revolution with variable radius and variable
stream surface thickness in a relative system. This development is
a further step to approximate the real physical behaviour of the
flow. The method is applied to the multi-section design of a
three-stage research compressor which is now in construction.
Computations for comparison were carried out with two different
analysis codes.



295
Thin Intemotenoel CoMoe.C .an Wnvi*r Dsign ConcPts and Opi.mizotbn im Ehg; morin; SCences
(IlDES-fl .Ed~o:C.S.Dulvravich wasningtr- D.C..Oetope- 23-2. -!90

FUNDAMENTAL EQUATIONS OF THE METHOD

Since inverse design strives for low loss flow without shocks and
boundary layer separation, Prandtl's concept of distinct potential
flow and boundary layer calculation is applied. In Fig. 1 the
fundamental process of the method is sketched. The method computes
the steady compressible potential flow in the passage between two
blades of unknown shape from far upstream to far downstream on a
stream surface of revolution. Besides the upstream and downstream
velocity vector, the velocity distributions are prescribed along
the arc length of the stagnation streamlines with their periodic
,arts in the upstream and downstream regions and along the blade
suction and pressure sides. In this way velocity gradients can be
prescribed, which is important for the boundary layer development
and a prerequisite for loss minimization. Moreover, radius and
thickness of the stream surface of revolution are prescribed along
the axial coordinate. These boundary conditions are transformed by
integration into the computation plane with stream function
coordinates and their normals. The computation grid is rectangular
-n this plane and contour adapted in the physical plane.
Therefore, no interpolations are necessary on the boundaries.

The equations of continuity and motion for steady, isentropic flow
on a stream surface of revolution are

OWp h W + [p h R Wm0
ae am

m u w 2R (2)

aOe am am

with the isentropic relation

P =  f (W, w, R) (3)

The appearance of a variable stream surface radius in the
fundamental equations requires a different treatment of rotor and
stator flows since in the relative system of the rotor an energy
alteration is connected with a radius alteration. So the relative
velocity W can no longer be prescribed by a potential. In the ab-
solute system (following Vavra [3)) an equivalent potential VAcan
be defined by

V'PA  = vA = w + 1 6R and V x vA = 0 .(4)

But the contour velocity distribution has to be prescribed in the
relative system, thus one coordinate direction is given by the
streamlines in the relative system. Together with the potential
lines normal to the absolute veloci:y an oblique-angled coordinate
system results, Fig. 2.
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At velocities W - 4R and flow angles 6 ; 7r/2 (e.g. in the stagna-
tion point region) the angle a approaches zero so that both co-
ordinate directions coincide. Following from numerical reasons
this system consisting of an absolute potential and relative
stream function is inconvenient for use as a computational grid.

The potential-streamfunction-plane is the computation plane of the
inverse design method. Furthermore, for using it in the rotor the
equation of motion is reduced to V k w = 0. The consideration of
the rotational character of the flow occurs by variation of the
total quantities dependent on the stream surface radius. (Another
consideration by definition of a transformed potential is pub-
lished in [4,5].)

Since the critical sonic velocity is no longer constant, because
of the variation of the total temperature, it is no longer appli-
cable for normalization of the velocity like in the stator case.
Hence, the upstream velocity W 1 is now applied for this purpose.
The decision which difference operator for consideration of the
type-dependence of the differential equation system has to be
applied is taken by the magnitude of the local Mach number.

By transformation of the fundamental equations into the potential-
streamfunction-plane and eliminatiov, of the flow angle the full
potential equation follows [6]:

e a21n 2W* + C2" a 2 1n2W* + C [ 3ln W* 2 + C4 - aln W* 2

* *
+ ln W Oln W+c C6 + C75 a 6 a 4

*

with C1 ... C7 = f (W w, R, h) (5)

and W = W/W1  for the rotor
= La for the stator

The flow field is computed by the solution of the corresponding
difference equation system applying relaxation combined with
multi-grid. The change of type (elliptic-hyperbolic) from sub-
sonic to supersonic flow regions depending on the sign of the
coefficient C1 is considered by modified difference equations. The
transformation of the solution back into the physical plane is
performed by integration of the equations of continuity and
motion. It yields the field boundaries, i.e. the blade profiles
and the cascade geometry.

For solving eq.(5) the dependence of the radius on the potential
and stream function R = f(.,v) is necessary. Since only the axial
development R = f(z) is known by the prescription, this relation
can only be discovered by an additional iteration in the course of
the solution process. The radius distribution has to fulfill the
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condition of constant values in circumferential direction. Normal-
ly the same is true for the stream surface thickness. Moreover,
the desired values of turning angle, pitch-chord ratio or blade
thickness distributions are attainable by iterative variations of
the prescribed boundary values (which are selfacting included in
the code). The whole geometry of the problem is always the result
of the computation and therefore completely unknown at the
beginning.

CIRCULATION, LEADING EDGE RESOLUTION, SHOCKLESS DESIGN

The profile circulation necessary for the desired turning, follows
from (s. Fig. 3):

osB 2nrR1  2itR 2 (
rp w'ds - 1 cos31 BN + W2 cosf 2 'BN'QBW

The line integral of the velocity along the computation grid
boundary can be converted by the law of Stokes into an area inte-
gral

w - 2 f w .(7)

The rotational vector + indicates in axial direction, d is
perpendicular to the through-flowed area. For the stator (w 0)
and for a rotor with constant radius (W II d ) the value of the
line integral equals zero. Because of the reduction of the equa-
tion of motion this is also true for rotor flow with varying
radius. The additionally existing circulation inside the computa-
tion grid is thereby neglected.

= 0 (8)

The profile circulation which is necessary for the actual turning
problem and which should be rendered by the prescribed velocity
distribution at the beginning of the design process is

21-R1 ' R2 1 W.COS81] (9)
p= BN W2 'cs 2 R 1  BW

The circulation inside the computation grid neglected in the rotor
case with varying radius can be estimated in maximum if the flow
conus area divided by the blade number (i.e. vanishing profile
area) is assumed as upper limit for the integration area:

w 4ir R22 (10)BN 2 R 1
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The relative deviation (refered to the circulation of the reduced
equation of motion) is

Ar- 2"rnR' . j -I

[cos/3 + C W2  R
I - + 2"W R' 0BWJ

In the case of compressor cascades (8 > 90) the reduced equation
of motion yields lower circulation for increasing stream surface
(R2 /R1 > 1) and higher circulation for decreasing stream surface.
In standard cases the deviation amounts to less than 5 percent
according to a turning angle deviation of less than 1 degree.

The leading edge region of a profile has special requirements for
the numerical aspects of a computer program for calculation of the
flow around an airfoil. In the design method this difficulty be-
comes especially clear since even the prescription data - the
velocity distribution on the boundaries of the flow field to be
computed - show the strong gradients in the stagnation point
region (Fig. 4). This area can be recorded only insufficiently in
an equidistant divided computation grid.

For appropriate resolution of the blade nose region it was found
that the number of points on the flow field boundaries should be
up to 24 or 2 times higher than that of the normal grid. Thereby
local grid refinement is provided for the regions with steep gra-
dients. For smaller point distances the possibility of emboxing of
refinements was established. In a corresponding fitted arrangement
a gradual transition of the mesh size follows. This is especially
favourable for the accuracy of the solution. For even higher accu-
racy, a feedback calculation can be performed which uses the
results of the fine grid for recalculation in the coarse grid in
an iterative way with overlapping boundaries of both regions.

In case of velocity prescriptions on the boundaries of local
supersonic regions an "ill-posed problem" is treated, i.e. no
physical solution may exist. Numerically this often leads to the
formation of oscillating shocks in the flow field, shown in
Fig. 5. If they are weak enough, a provision for cancellation of
these shocks is given in Fig. 6: Following the plotted character-
istic directions in the supersonic region from the concerned
region to the corresponding boundary values, these values can be
modified for generation of additional expansion waves to remove
the shocks [7].

RESULTS

The first example is a cascade for a compressor stator hub section
with supercritical flow (local supersonic region on the suction
side), Fig. 7. The high subsonic velocity La1 = 0.90 is deceler-
ated to the downstream value La, = 0.593 by a turning angle of 25
degrees and a relatively high pitch-chord ratio of t/lax = 1.0
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The stream surface radius R increases by 30 percent from upstream
to downstream and the stream surface thickness h decreases by 25
percent in the same direction. Their prescribed slopes dependent
on the axial length z are given in Fig. 8. The curves of the inner
and outer radius of the stream surface of revolution consist of
cosine slopes, the maximum angle of inclination of the stream sur-
face is c = 25 degrees. In the cascade region the stream surface
thickness distribution follows a cubic parabola, in the upstream
and downstream region it is calculated by constant flow area.

In the upper part of Fig. 7 the full line shows the prescribed
velocity distribution on the blade suction and pressure side. This
roof top distribution with maximum Mach number of 1.19 (La = 1.15)
was chosen for separation-free flow with high loading. On the suc-
tion side transition takes place at the beginning of the pressure
rise at 31 percent of chord length (at Re = 4.7'10 and Tu = 4%).

In the lower part of Fig. 7 the computed profile shape is plotted.
The dashed line marks the contour of the potential flow computa-
tion from which the manufacturing contour (full line) is derived
by subtraction of the boundary layer displacement thickness (com-
puted by Rotta's integral method [8]). The complete cascade geome-
try and the flow field characterized by the (full) lines of con-
stant velocity (with the sonic line La = 1.0) are shown in Fig. 9.
The cascade geometry data were used as input for the analysis code
of LUcking [9]. The results, the contour velocity distribution
(crosses in Fig. 7) and the velocity distributions in the flow
field (dashed lines in Fig. 9) agree well with the distributions
of the inverse code, even in the supersonic region.

Moreover, in Fig. 10 the course of the lines of constant radius
(dashed-dotted), which can only be calculated iteratively (see
above), coincide well with the demanded circumferential direction.

In Fig. 11 the prescribed velocity distribution of a rotor tip
section (n = 3600 rpm) is plotted together with the resulting
profile shape (both full lines). Despite of the low turning of 6
degrees, due to the high upstream velocity of La = 0.866 and the
high pitch-chord ratio of t/l = 1,761 the loading is high enough
to require local supersonic How on the suction side. In Fig. 12
the cascade geometry and the flow field consisting of lines of
constant velocity is drawn, showing the great stagger of this
design. The geometry of this result was again used to compute the
velocity distributions for comparison by the finite volume method
originating in P.W. McDonald [10]. The crosses in Fig. 11 and the
dashed lines in Fig. 12 exhibit satisfying agreement with the
design computation (full lines).

The velocity distribution of the rotor hub section (Fig. 13)
belonging to the preceding rotor tip section was mainly influenced
by a desired maximum thickness of the profile (in consideration of
structural reasons). Therefore, high velocities appear on the
suction and pressure side without high aerodynamic loading. The
design on stream surface with radius increase of 14 percent (full
line) is compared with plane flow design for equal upstream and
downstream velocity vectors. It is to be seen that in the plane
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flow case higher circulation is needed for the same turning prob-
lem but a thinner profile results compared to the design on
increasing radius. In Fig. 14 the cascade geometry is demonstrated
and the isolines of the velocity are compared with the results of
the finite-volume method [10]. In the front part of the flow
channel including the local supersonic region the velocity field
compares well. In the rear part, refering to a local aft-accelera-
tion behind the supersonic patch the coincidence of the isolines
is somewhat disturbed.

CONCLUSION

The present extended inverse method seems to be an effective
procedure to design highly loaded axial compressor cascades on
stream surfaces of revolution. It produces accurate results
compared with complete flow field results of other methods and was
successfully applied to cascade and multi-section compressor blade
design.
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Fig. 2: velocities and coordinate directions
in an absolute potent! 1./relative
stream function system.

Fig. 1: Soluti.on p)rocess of the inverse design method.

Calculation of Profile Circulation

circulation inside computation grid:
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Lig 3: Calculation of the profile circulation.j
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Fi.4 Computation grid of a compressor cascade in the flow plane with
velocity as height coordinate, demonstrating the resolution of
of steep gradients in the stagnation point region.
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Fig. 7:
Comparison of Laval number distributions on the
blade between design and analysis calculation on
s tream surfaces of revolution for the stator hub
section. Additionally the potential flow contour
(dashed line) and the metal section contour
(full line) are indicated.

Fig. 9: Comparison of field distributions of Laval numbers between
design (full line) and analysis calculation (dashed line)
on stream surfaces of revolution for the stator hub[ section (increment ALa = 0.05, sonic line La - 1.).j
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Fg a:Field distribution of Laval number (sonic line dashed,

increment ALa x 0.025) and lines of constant stream

surface radius (dashed-dotted) for the stator hub section.
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Fig. 13: comparison of Laval number distributions on the blade
and of blade contours between design of rotor hub
section on plane stream surface (dashed line) and
on stream surface of revolution (full line).

/,

Fig. 14: Comparison of field distributions of Laval numbers between
design (full line, sonic line dashed-dotted) and analysis
calculation (dashed line, sonic line short dashed) on
stream surfaces of revolution for the rotor hub sectionL (increment ALa - 0.05). j
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E. Greff+, D. Forbrich* and H. Schwarten**
Deutsche Airbus GmbH, Dept. of Aerodynamics, Bremen F.R.G.

ABSTRACT

A direct-inverse approach to the transonic design problem was presented in its
initial state at ICIDES I. This paper reports further applications of the DIVA-
method to the design of airfoils and incremental wing improvements and the ver-
ification in experiment. First results of a new viscous design code also from
the residual correction type with semi-inverse boundary-layer coupling are com-
pared with DIVA which may enhance the accuracy of trailing-edge design for
highly loaded airfoils.
Finally the capabilities of an optimization routine coupled with the two vis-
cous full potential solvers are investigated in comparison to the inverse meth-
od. The designer with expertise in specifying pressures can usually sort
through certain design philosophies and off-design criteria more efficiently
than an optimizer up to now.

I. INTRODUCTION

The application of CFD methods for aalysis and design has been progressively
increased in the past decade, 2,3  but when it comes down to the global forces
lift, drag and moment for transonic wings, let alone more complex configura-
tions with pod interference, the general accuracy of wind tunnels remains un-
matched. As cruise performance is the main driver for a transport aircraft de-
sign and the current designs in service already represent a high standard the
designer has to meet very tight performance targets at a guarantee margin of
1-2% in drag.

This has to be achieved at limited budget and within a time frame of -2.5
years during the definition phase through extensive iterations and repeated
wind tunnel test loops. increased quality requirements and complexity of the
models, however, reduced the number of possible wing steps to 4-6. Hence
greater emphasis was placed on inverse design concepts at DA based on a combi-
nation of a direct-inverse transonic design code with measured pressure distri-
butions on complete configurations in order to derive incremental design im-
provements and performance estimates of high accuracy. Previous design codes in
the 1970's have either worked with the hodograph equations, 5 , used direct op-
timization techniques6 or tried the inverse approach for the full potential
equation7-o . Hodograph methods are extremely difficult to use and limited to
shock-free flows which in practice reveal adverse drag in off-design cases.
Inverse methods that solve the Dirichlet problem need special treatment of the
trailing-edge closure, which used to be a problem with earlier codes 9. A va-
riation of the nose shape6 or tangential speed distribution along the a priori
unknown arc length' 1. 2  can force closed profiles but in several cases the
resulting pressure distribution is far off the desired one.

+ Head of Aerodynamic Design Department

L Research Engineer, Aerodynamic Design
Research Engineer, Theoretical Aerodynamics j
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[A direct-inverse approach turns out to be more flexible in practical design, as
it merely needs a specified pressure distribution and a starting geometry. Due'
to the modular structure of the computing concept - the residual between actual
and specified pressures is determined by the use of an analysis code and the
geometry corrected to minimize the residual - the transonic analysis code is
exchangeable and flows with shocks and viscous interaction can be treated in
the design cycle.

At ICIDES I the DIVA-method was presented in its initial state'3 and applied to
several successful designs for airfoils and wings1' . Further approaches to the
viscous direct-inverse design were reported recently by Campbell' 5 and Carl-
son 16 where even separated flows can be treated.

Higher order analysis codes that solve the Euler equations are already in use
as to mention the ISES-Code by Drela ' which is based on a coupling with an in-
tegral boundary layer formulation with a lag-dissipation closure. This code is
very accurate in the analysis mode, the design modi available so far do not
solve for an arbitrary pressure distribution. A starting geometry close to the
desired one is necessary as the speed distribution on the leading edge is pre-
scribed - a major disadvantage. Even Navier-Stokes-Codes are already offered as
an analysis code in residual-correction design mode.

Efficient full-potential solvers coupled with semi-inverse boundary layer inte-
gral methods simulating wake curvature and thickness effects have demonstrated
their accuracy with respect to pressure distribution and drag which is in the
tolerance of different 2D windtunnels 18 2 1 . Three-dimensional analysis with
full-potential or Euler solvers has experienced significant progress and even
complex configurations with engine/jet-effects are being treated worldwide.
Viscous effects however are mostly omitted or inaccurately modelled so far.
Moreover the inverse formulation is an ill-posed problem.

For design purposes we therefore rely upon 2D-methods which can be used more
rapidly and allow the designer to focus on key design parameters and quickly
sort out different design philosophies. Some ingenuity is needed for the trans-
fer to three-dimensional design, but this can be done by using an analogy meth-
od based on pressure distributions of a datum wing quite accurately.

II. THE DIRECT-INVERSE ANALOGY-METHOD (DIVA)

The two-dimensional transonic direct-inverse design method was presented
in'3."4 . The DIVA uses an improved stream function method - based upon the work
of Oellers 22 and Ormsbee and Chen 23 - to design an airfoil for a specified sub-
sonic pressure distribution. The airfoil surface is replaced by a vortex sheet
with linear variation of singularity strength between the surface node points
(fig. 1), whereas the Ormsbee method used a constant strength.

The sum of a stream function for a parallel flow and the perturbation stream
function of the vortex sheet is a constant on the airfoil surface. This is ex-
pressed in the following integral equation:

+b 1AbY( s ) I n r d s = Z'U 'cos a - X'U 'sin a (1)L j
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"[where 4,b is the unknown constant on ,the body 's surfac6.. In,, ode tot. sol.ve the]
eqeation for the vorticity strength yts) and- b' the integral is approximated
;by, a quadrature,. The airfoi. is divided into N-I segments,,- where is the odd
number of panel node points. The si'ngularity strength varies linear in between
two node points. This yields a system of N-simultaneous linear equations

1 K(
z Kij = Zi*U.'cos a - Xi'U *sin a (2)

i control point.

The Kutta condition is

Y1 + YN z 0 (3)

The influence of the wake is simulated by continuing the vortex sheet with con-
stant y downstream. It starts aligned with the bisector and turns slightly
downstream into the direction of the oncoming flow.

A specified pressure distribution can be achieved by successive iteration of
the ordinates Z;, while the abscissae X. remain constant. The ordinates ZTof
the mth iteration are determined by replacing the singularities of the (m-l)th
iteration by the prescribed values y:

W I(m-1) N-1 (m-I)zi m _ l (Xi ' sin a + + Ki Y p (4)

cos 3 1 J=l

The iteration ends if either the condition

max {AZ i  max {/Zi(m) - z i(m-l)h
i i

or

max {ACPi}= max {/Cpi (n) . Cp(m-i )/) (5)
1 1

is met.

As a first step for transonic design, the subsonic pressure distribution for a
starting geometry is computed for M = 0 (M = Mach number). This wing section is
then analysed in the high-speed region with the BGKJ program24 coupled with a
semi-inverse boundary layer method's. The target pressure distribution at tran-
sonic speed is compared with the BGKJ result and the differences (fig. 2) are
scaled down to the subsonic regime according to a modified Karmhn-Tsien rule.
A new inverse step follows after modifying the subsonic pressure distribution.
This iteration loop usually converges within 5-10 design cycles.

Sample design cases for inviscid and viscous design were reported, 3 as well as
applications to three-dimensional design. The purpose of this paper is to show
successful applications and comparison with experiments for designs derived
with the code and to present an improved viscous design code.

L j
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FjII. APPLICATIONS OF DIVA-2D AND COMPARISON WITH EXPERIMENT

A typical task for a design engineer is to increase, speed flexibility and for
this purpose we tried to transpose the known characteristics of a datum airfoil
designed for Cl = 0.565/M = 0.73 to M = 0.75 at constant lift and moment for a
given thickness. Fig. 3 shows the computed result of the datum airfoil as well
as the target which was slightly modified to keep local Mach numbers below 1.2.
The required thickness was 11.5%, whereas the datum airfoil had 11.93%.

The measured pressures at off-design demonstrate the successful design. At this
lift the new design shows nearly the same drag, whereas at lower lifts a sig-
nificant improvement is demonstrated which is 5 drag counts (1 d.c. = 0.0001)
better than the pure thickness effect. As the shock-strength at higher lifts
turned out to be higher than expected, a geometry check was performed.

Whereas the maximum deviations in curvature are concentrated on the lower side
and the nose region, the slope change on the upper surface seemed to be small
(fig. 4). The computed iso-Mach contours however revealed a bucket in the sonic
line. This is due to the coalescence of the compression waves reflected by the
surface changing from convex to concave curvature. Such a coalescence results
in the earlier formation of shock waves which was confirmed by Schlieren-pic-
tures (fig. 5).

The new airfoil served as a fixed camber reference for a variable camber (VC)
airfoil - a concept which was reported for example in25 . A scheme of a system
solution is given in fig. 6 using the existing high-lift system. The camber
variation is achieved by small fowler motions, where the wheels of the flap
carriage are guided by two individual tracks in such a way, that in VC-opera-
tion the flap body slides underneath the spoiler trailing edge. The control
track and the flap upper surface have to be shaped such, that camber variation
is performed with minor discontinuities in surface curvature.

As a consequence to this proposal - which allows only positive camber deflec-
tions - the design point is shifted to lower lifts where the wing is optimized
with respect to minimum drag with relaxed off-design constraints. This will be
the setting at low altitudes, low weight (medium range mission) and towards the
end of cruise. At start of cruise, step climbs to higher altitudes or increased
weight the lift demand is satisfied by discrete camber/fowler settings re-
sulting in the envelope in fig. 6.

A first VC-airfoil was developed in reference to the fixed camber optimum air-
foil mentioned above. For the design of the VC-airfoil criteria for a "VC-
suited" pressure distribution were concluded which are illustrated in fig. 7.
At the design point (Cl - 0.45)
- the supersonic region should be confined to X/C = 0.4 and terminated with a

weak shock;
- the region close to Cp* should exhibit small gradients in order to guarantee
a stable shock position in off-design conditions;

- the subsonic recompression gradients should not be larger than dCp/dx=3;
- the trailing edge recompression gradient should be degressive (Stratford-

Type), which is benefical for the turbulence structure and hence reduces the
friction drag;

- the balance of front loading and rear loading at the lower surface should be
altered towards front loading to reduce the adverse effect of pitching mo-

L ment.
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[According to these criteria, the airfoi] Was designed by DIVA.

A wind tunnel model with three VC-flap settings was tested. For each level of
efficiency M*L/D the VC-airfoil demonstrated a greater flexibility in the Cl-
M-plane and the maximum efficiency was increased by 12% (fig. 8). A calculation
of the pressure distribution according to the VC-control law for four settings
adjusted to the lift demand (fig. 9) incorporated the surface imperfections due
to the discrete variation. The effects in pressure and drag are negligible
which was confirmed by experiment.

In the framework of the national research program ZKP-TLFI natural laminar flow
(NLF) investigations were performed. In comparison to a conventional airfoil
the typical NLF design features are depicted in fig. 10. Laminar flow runs of
60% and 30% of the exposed wing area were assumed resulting in some 10% of air-
craft cruise drag reduction. The required continuous acceleration imposes the
problem of increased recompression gradients with potential separation and
shock-wave boundary layer interaction upon the designer. In off-design condi-
tions laminarity loss due to pronounced suction peaks and corresponding
Tollmien-Schlichting instability or cross-flow instability with changing gradi-
ents versu* lift may occur, A tool to shift the laminar bucket with increasing
lift demand is available by the VC concept.

A first NLF-airfoil was designed with DIVA for a lift of 0.4 and M = 0.73 and
tested. Fig. 11 shows a comparison of measurement and computation. The transi-
tion free drag is -40% of the turbulent level and even the turbulent level
turned out to be competitive to a conventional airfoil of same thickness.

Finally the survey of 2D-designs is concluded by an example for hybrid laminar
flow control (HLFC). An ar'itrary starting geometry was chosen (NACA 0008) and
the result was established after 20 iterations (fig. 12, 13), a further proof
of the versatility of the DIVA method.

IV. SAMPLE DESIGN CASE FOR 3D-DERIVATIVE DESIGN

In view of the difficulties of producing a design method for airfoils it is not
surprising that no completely successful solutions for the three-dimensional
transonic case are available, A combination of wind tunnel results of a datum
aircraft with a direct-inverse design method seemed to be more promising though
not satisfying from the scientists' viewpoint. Subsonic pressure distributions
(up to M = 0.6) are used to design a zeroth iteration geometry by means of the
subsonic inverse code. These sections include the subsonic cross-flow and vis-
cous effects. If a transonic pressure distribution is then prescribed as target
distribution, 'he OIVA method can design an airfoil representing the measured
three-dimensional distribution when analysed with a two-dimensional direct
code. This airfoil deviates from the actual section profile: it is an analogous
numerically adapted profile.

Starting from this state, a redesigning of the wing is possible by improving
the target pressure distributions in selected spanwise stations. The result is
a new set of analogous profiles. The differences between the two sets of pro-
files have to be added to the datum wing sections and the new wing is defined.
This may sound artificial, but is a quite reliable way to incorporate interfer-
ence aspects in the design of a new wing. 1n13 already two applications of this

LDIVA-3D were reported. j
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Ac recent successful application was the validation of a trailing-edge modifi-]
cation on the Airbus A340 (fig. 14). A 3.75% chord extension combined with a
camber increase was designed at the outboard engine position,. The effect of the
modification is a reduction of the lift break due to the engine and hence a
gain in induced drag as well as a pressure drag improvement (fig. 15). The
estimate in fig. 15 is in surprisingly good correlation with the subsequent
test result.

V. AN IMPROVED DIRECT-DESIGN CODE WITH A HIGH ACCURACY VISCOUS TRANSONIC
ANALYSIS CODE

The high accuracy of the viscous transonic analysis code SGW'9 "21 was coupled
with a new direct design method called REPAN, a name, which is an abbreviation
of reverse panel method. The basic principle is the formulation as a mini-
mization problem, which is adapted in the form

M 2e

E =z oC pi (a*) - Cptaret] Min (6)

Thus we look for a profile, which fits best to the target-Cp-distribution at M
discrete stations. The minimum of the merit function E is done with an algo-
rithm due to Levenberg and Marquardt26 . The geometry to be designed is given in
terms of a set of design parameters a, which specify the location and shape of
the profile. Starting from an initial geometry the minimization is done by
variing these parameters. To perform a minimization step, a matrix, relating
pressure changes and parameter changes, has to be computed. This matrix is just
the Jacobian of the transformation from parameters to pressures (= analysis
code!). It is computed numerically.

The set of parameters, which specify the actual geometry, splits into two
groups: global and local ones. The former include the chord angle and transla-
tion vector components between profiles for multi-element cases (fig. 16). They
specify the location of the profiles without altering the shape. The profile
shape is defined - separately for lower and upper side - by Bezier splines.

B "
This technique uses a set of points r = (x, ),i l...n ('Bezier-knots',
fig. 16) to define a curve with position vector W(t) (x(t), z(t)) by the pa-
rametric equation

n B
r(t) = z r i B n,i tW(7)

i=O
with

B (t ) ti(l_ - i , 0 < t < 1 (8)

(n) is the i th binomial coefficient of order n.

1

The curve defined in this way has the following properties:

(i) The curve passes through the first and last Bezier knot for parameter val-
ues t = 0 resp. t = 1. This follows immediately from the definition, because we
have

L
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vand the above sum reduces to

i 4(o) = o  ) B (10)

(ii) Taking the derivative at t 0 it follows, that

r(o) = B B(1

which is equivalent to

B B
dz - i(o) 1 0 (12)t=o (o) T4

The derivative of the curve at the beginning is therefore given by the tan-
gent of the first Bezier segment. An analogous result is valid at the endpoint
t = 1.

These properties can be used to impose simple constraints on airfoil geometry.
For airfoil design, r(t) represents a lower or upper side and t = Oil corre-
sponds to the leading/trailing edge. The {xi coordinates of the points of the
initial airfoil are used to establish a corresponding set of parameters {ti 1;
the Bezier ordinates - excluding the first and last one - z@, i = 1, ...n-1 are
the local design variables mentioned above. These will be determined in such a
way, that the sum of squared pressure deviations is minimized.

As the airfoil is composed of two parts, some restrictions on Bezier knots have
to be imposed to insure continuity of values, first and second derivative at
the connection point i.e. the leading edge:
- The first Bezier knot is placed at the leading edge and held rigid.
- The second one has the same x-value' as the first one: xB = xB. This serves

for a normal tangent at the leading edge (see fig. 16). 1 0
- The ordinate zB of the second Bezier knot is related tG the curvature at the

leading edge. This fact can be used in two ways: (1) relating the ordinates
of the first Bezier Knots on the lower and upper side serves for continuous
curvature with a value, determined by the design process, or (2) we can do a
design with specified leading edge radius just by fixing the ordinates to
their appropriate values. The design in fig. 19 is done with continuous but
variable leading edge radius.

Similar conditions hold at the trailing edge. The last Bezier knot is placed at
the last point of the lower resp. upper side and held rigid thereby keeping the
trailing edge thickness constant. Additionally we could prescribe the tangent
of the last Bezier segment thus performing a design with specified trailing
edge angle.

The minimization of the sum of squared pressure deviations is done with an al-
gorithm after LEVENBERG and MARQUARDT. It is an elegant method that combines
the inverse Hessian method and the steepest descent method by introducing aI
Lfactor ("Marquardt-factor"), which switches smoothly between these extremes.j
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F Far from the minimum (large factor) steepest descent steps are performed]
whereas approaching the minimum this factor is reduced automatically thus
switching to inverse Hessian steps.

This method works very well in practice and has become the standard of nonlin-
ear least squares routines. Details of the method may be found in26 . Fig. 17
shows a simplified flow chart of the REPAN-design procedure.

In the past authors used the least squares method for solving the profile de-
sign. Labrujere 27 prescribes tangential velocities and uses Legendre poly-
nomials for the shape description. He did not include global parameters.
Bristow28 used panel direction angles as design variables. He had to do addi-
tional Cp-control to achieve smooth profiles.

To formulate the inverse problem as a minimization problem has several advan-
tages:
(1) As the inverse step is purely algebraic, each analysis code can be run in

the reverse direction. The present method is optimized for coupling with
panel codes - concerning calculation time - but any given code, even large
scale ones as used in our test case two, can be used as well. But it should
be mentioned, that additional code dependent research is required, to ob-
tain solutions in reasonable time. Calculation time is the crucial point of
this approach.

(2) The geometry definition includes the possibility of geometrical con-
straints, such as fixed trailing edge thickness, normal tangent at the
leading edge, prescribed trailing edge angle. Curvature control during de-
sign process is possible by additional control of the turn-around angles at
the Bezier-knots (fig. 16). This option is needed in critical cases only.

(3) From a practical point of view, flexibility in cases of partly unphysically
specified target pressures, is the most important feature. Although we
know, that constraint conditions are to be fulfilled by the Cp-target val-
ues 29, there are two situations, in which unproperly specified Cp's are un-
avoidable: measured Cp-distributions (because of measurement errors) and
2D-Cp-cuts from 3D-configurations (because of missing stagnation point). In
such ill-posed cases we solve for the "nearest" profile in the least square
sense. Additionally, if we have a guess of some unphysical target pres-
sures, they can be "switched off" by setting the corresponding o equal to
zero. For small regions of the profile - where "small" means small with
respect to the distance of Bezier-knots - we are allowed to do that, be-
cause the variation of a local parameter affects a reasonable part of the
profile (in fact, the whole side, because Bezier-splines are nonlocal) and
therefore the geometry is determined by the influence of nearby pressures,
which are assumed to be correct. This has been proven to be helpful in the
vicinity of the stagnation point and the trailing-edge region.

As a first validation example test case 2 from ref.' was chosen, which shows
the design potential of a typical supercritical airfoil with rear loading. By
means of a calculation with the BGKJ code including semi-inverse boundary-layer
coupling, the pressure distribution in fig. 18 was obtained. Considerations
concerning a reduction of rear loading led to the modified target distribution
also depicted in fig. 18.

In the case of DIVA a liquid surface is designed where the displacement thick-
ness has to be subtracted whereas the REPAN code solves directly for the solid
geometry by applying viscous iteration in the analysis. The geometry modifica-
ions delivered from both codes are given in fig. 19 as well as a comparison of]
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Fthe last REPAN iteration with respect to the target pressures which is satis-"f actorily matched. The redesigned airfoils are quite similar at first sight'but'
the REPAN airfoil does not meet the required thickness (12.55% instead of
12.93%) and a significant deviation of the trailing-edge camber can be noticed.
This corresponds to not properly specified trailing-edge thickness. As men-
tioned above this quantity is held fixed during design process. Cp-control is
done everywhere except at three stations near stagnation point.

In order to compare the two different designs, the airfoils were calculated for
the same lift and Machnumber with the BGKJ code incl. boundary layer iteration.
While the agreement with the target distribution (fig. 20) for the DIVA airfoil
is still quite good the REPAN airfoil shows a larger deviation. This is due to
the local change at the trailing-edge and corresponding higher angle of attack
for a given lift. At the design point the DIVA airfoil shows 1.5 d.c. less drag
and a 43% reduction in pitching moment with respect to the datum airfoil. The
REPAN airfoil however exhibits 2.5 d.c. excess drag despite the reduced thick-
ness. If the thickness is scaled to the target value additional 2 d.c. have to
be added; i.e. that the improvement at lower lifts in fig. 20 is diminished.
Hence it can be concluded that at the present state further investigations de-
voted to the accuracy of the trailing-edge region seem to be necessary in order
to enhance the viscous design modus.

VI. Application of a Numerical Optimization Routine

The design methods described so far require an experienced designer with physi-
cal insight into the trade-offs of the pressure distribution he specifies. But
what is the ideal pressure distribution with respect to different objectives
under practical constraints? A further class of design methods using opti-
mization routines may give an answer to this.

Coupling of a gradient method with two transonic aerodynamic analysis codes
In an optimization process a so-called 'objective function' F(X) is to be mini-
mized (or maximized) subject to a set of (m) given constraints Gj(X) < 0,
j = l,m with X being the vector of the design variables.

Relating to the design of an airfoil the variables would have to define the
airfoil shape while the objective function would be a characteristic of this
airfoil, for example the drag coefficient Cd, at a given design point. To keep
the design inside certain boundaries and allow the optimization code to con-
verge faster some constraints on other airfoil characteristics such as lift,
pitching moment etc. or geometrical constraints like the thickness, camber,
trailing edge thickness should be imposed.

Though a lot of different optimization techniques can be applied to approach
this design problem it is evident that, among the existing nonlinear minimi-
zation routines, the Vanderplaats gradient method 6. 30

,
31 ,35 is the most widely

used 32,33,3k, 3 6 .

This optimization code called CONMIN (Constrained Function Minimization) is
part of COPES, a Control Program for Engineering Synthesis. In this code the
strategy, one-dimensional search direction and optimizer can be chosen by the
user and adapted to a certain problem.

Fig. 21 shows the principle of the design process. The optimization direction

Lfindinq process of COPES is illustrated for the two-variable case. First each]
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Fcomponent of the design variable vector 7 is varied starting from X0 (initial 1
design variables) and leading to a gradient vF(7°). This could be taken as the
search direction S but because of convergence problems for nonlinear functions
the "method for conjugate directions" is being prefered. In this case S is cal-
culated from the gradient and the last search direction by

q = _vFq + ivFq1 2 / JvFq-11 2 . Sq-1 (13)

If the design comes in contact with a constrained region the search direction S
is found taking the gradient vGj of the active constraint and vF of the
objective function. In addition a "push off factor" is used to direct the
search vector in the region where the feasible sector (allowed designs) and the
usable sector (designs with improved objective function) overlap. This region
is called the usable feasible sector. Since every iteration step needs n+3
analysis, i.e. about lOn+30 calculations for one design, which has to be done
by a precise, time consuming (therefore expensive) aerodynamic analysis code,
COPES offers another design mode to approach these problems. Here the objective
function and the constraints are developed as second order Taylor series expan-
sions :

F(X) = FO + + 1/2 T ith _

~TF /2 [ HI AX A7 = X-X0
G = G? + 6j + 12T F = F(7) at 70

G =TvGj +I2x[H).iX [H] = Hessian Matrix (14)
vF = vector of first

partial derivatives

Using this mode of the code assures accelerated convergence because data cal-
culated in one iteration step are still known in another step, which is not
the case for the standard design mode. Also only one exact analysis is needed
for every iteration, whereas the first Taylor series expansion requires
l+n+n'(n+l)/2 additional analysis in this approximation mode. So the method
should be used for less than twenty design variables to be more efficient than
the standard finite difference mode. Through the Taylor series the user is also
able to prescribe a solution and accelerate the convergence of the code even
more if he has some good designs to start from. In fig. 21 the approximation
mode is depicted.

An airfoil shape can be described by the design variables either in the form of
an analytical function or a function of aerodynamic origin, i.e. an airfoil
library (fig. 21) or so-called aerofunctions. The analytical functions describe
an airfoil by polynomials of higher order, which leads to a large number of de-
sign variables or problems of fitting the polynomials together if the airfoil
is divided into different sections. Also some unrealistic shapes may occur be-
cause the solutions are purely mathematical.

In order to start the process the analytical functions are fitted on an initial
shape and coefficients are obtained. These coefficients together with the Mach-
number, the angle of attack (or the lift coefficient) and the given set of con-
straints are needed by the program to optimize the objective function. The co-
efficients are the design variables being perturbed by the optimizer to reach
an optimal design. A new shape is prescribed by the linear combination

Y = 0 + XIFI + X2 F2 + ... + Xn-Fn (15)

with (X., j = O,n) design variables (shape coefficients)

L (Fj3 j l,n) vector with analytical shape functions j
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[With r6spe6t to theorders of the analytical function n, acompromise has to be]
'found between a large number of variables and a good approximation of an air-
foil shape. The last also depends on the type of function that will be used,
since some functions tend to reveal oscillations even at higher polynomial or-
ders. Generally the order should not exceed twenty on the whole airfoil because
the analysis especially with a viscous code will be too expensive.

Similar to the preceding definition functions of aerodynamic origin are applied
by superposition of different airfoil shapes from an airfoil library with a
linear combination (see fig. 23). In this case the Y-coordinates (shape func-
tions) are defined numerically and not by analytical functions. By adding spe-
cial airfoils to the library that fulfil some desired constraints it is possi-
ble to impose these constraints on the optimized shape without giving this in-
formation to the optimization code. Therefore these constraints do not have to
be evaluated and checked for their influence on the objective function during
every design loop, which means saving time.

Another type of functions with aerodynamic origin are quoted as "aerofunctions"
in some references32 ,36 . Here pressure distribution shape functions are super-
imposed on an initial pressure distribution and the perturbations are related
to different airfoil shapes. This also promises to provide some realistic
shapes as optimum solutions. In the present design task an airfoil library is
used to define the shape but later the program should be expanded with regard
to analytical functions.

The viscous BGKJ-code' 8,2 4 and the SGW-code' 9 -2 1 are both coupled with COPES.
Especially the latter provides a high accuracy analysis tool to calculate coef-
ficients describing the characteristics of an airfoil at the design point. This
is needed to make the direct design competitive against the inverse design
methods.

Test cases
To validate the successful coupling a testcase from Vanderplaats 3. 35 is being
calculated with the BGKJ-code as analyser. With a given set of four NACA air-
foils and two basic shapes to impose geometric conditions an airfoil with maxi-
mum lift for Mo0 = 0.1 and a 60 should be found that satisfies the constraints
mentioned in fig. 22.

In this figure the initial airfoil, the reference airfoil and the optimized
airfoil after 42 iterations without and 17 iterations with Taylor series expan-
sion are compared. Despite the different analyser the result differs only
slightly from the reference, whereas the result without Taylor series expansion
is still not converged.

For the second test case a library of six transonic airfoils is given to re-
design the VA2 airfoil at M = .73, Cl = .552 for minimum drag. Since the
design was already performed'by the DIVA-code with the BGKJ-code as analyser
the role of constraints and the influence of the library on the design should
be investigated.

Fig. 23 illustrates the set of airfoils and constraints for which the converged
solution after 30 iterations does not give a realistic shape comparable with
the one designed by DIVA. This is also the case if the constraints are relaxed
or a pressure gradient is prescribed. Only if the Cm-constraint is omitted the
optimizer converges after 25 iterations showing an airfoil that resembles more
[the VA2 type, especially concerning the rear loading. The pressure distributionj
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Femphasizes this circumstance. A solution close to the DIVA optimized airfoil]
however can be found if this airfoil is included in the library. Therefore it
can be concluded that for the given task the airfoil library is not sufficient
to design an airfoil as good as the DIVA airfoil, for which off design aspects
are also considered.

For the third test case COPES is coupled with the SGW-code to redesign the VA7
airfoil. This basic VC-airfoil should be optimized with respect to minimum drag
at the design point M = 0.74, Cl = 0.45 and constant thickness. The optimi-
zation result after 19 iterations is depicted in fig. 24. Though the changes
are only moderate a drag reduction of one count is reached. Again the library
of four airfoils (see fig. 24) does not allow a better result starting from the
VC-airfoil with only small changes in the shape for every design iteration.

Nevertheless this combination of COPES and SGW as analyser promises to work
more efficient if analytical functions are used to describe the airfoil.

VII. Conclusion

Applications of the direct-inverse analogy-method (DIVA) for the design of su-
percritical airfoils and wing modifications have been presented and verified by
experiment.

The method yields results with high accuracy even for flows with strong shocks.
It is as simple as possible from the user's point of view and merely needs a
pressure distribution as input. The influence of the starting geometry (i.e.
nose shape) is negligible.

An application to three-dimensional design is possible, provided an initial
wing shape and pressure measurements are available. Incremental improvements of
wing performance may be assessed with an accuracy less than 1 per cent.

Due to the modular structure of the computing concept, the transonic code is
exchangeable, and improved codes can be implemented. So the DIVA method is a
comprehensive tool for practical wing design. Future applications by using 3D-
Euler results including viscous corrections instead of measurements are planned
in order to obtain further refinements of the design before testing it.

A new residual correction design code with complete semi-inverse boundary layer
iteration in the design cycle was presented which may enhance the accuracy of
trailing-edge design for highly loaded airfoils. Further work in this field is
envisaged.

Finally applications of a numerical optimization routine coupled with two vis-
cous full potential solvers were discussed. A significant dependence of the re-
sults upon the airfoil library to be composed was found. A more general geome-
try description seems of paramount interest. However the designer with exper-
tise in specifying pressures may win hands down in this competition.

L j
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ABSTRACT

An iterative method for blade design based on an Euler solver and described in an earlier
paper is used to design compressor and turbine blades providing shock free transonic flows.
The method shows a rapid convergence, and indicates how much the flow is sensitive to small
modifications of the blade geometry, that the classical iterative use of analysis methods might
not be able to define.

The relationship between the required Mach number distribution and the resulting geometry
is discussed. Examples show how geometrical constraints imposed upon the blade shape can
be respected by using free geometrical parameters or by relaxing the required Mach number
distribution.

The same code is used both for the design of the required geometry and for the off-design
calculations. Examples illustrate the difficulty of designing blade shapes with optimal perfor-
mance also outside of the design point.

SYMBOLS

a speed of sound
M isentropic Mach number
ii normal vector
p0  total pressure
p static pressure
t time
T o  total temperature

V velocity vector
10 flow angle (with resp. axial)
ar cascade solidity

subscripts

n normal component
t tangential component
1 cascade inlet

L 2 cascade outletLd
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INTRODUCTION

The design of new compressor and turbine blades is in most cases still done by successive
direct analysis of the flow field around a given blade shape and modifications of the blade
geometry, according to some empirical criteria and/or the designer's own experience. This
approach makes it easier to respect geometrical and mechanical constraints imposed to the
designer, such as thickness distribution, inertia momentum, stagger angle, pitch-to-chord ratio,
etc.

New aerodynamic design tools have been developed, that have shown the ability to provide
conclusive improvements of the aerodynamic performance when compared to existing blades.
These improvements result from a specified controlled diffusion along the blade surface or
a shock-free transonic flow. It is unlikely that they can be obtained by a traditional design
procedure, namely by a series of flow analysis and empirical blade modifications. The design of
transonic shock-free blades by means of an inverse method is one of the main topics discussed
in this paper.

Analytical design methods developed in the past, using conformal mapping (Lighthill, 1945,
Woods, 1955), permitted to build a complete theory of the inverse design of airfoils and blades,
and provided the conditions required for the ey;stence of a solution. However, they have a
limited application due to the restrictive assumptions needed to allow an analytical formulation
of the problem. As the blade shape results from the calculation, it is also more difficult to
satisfy the mechanical constraints that one may wish to impose on the blade shape.

Numerical inverse methods have been developed for potential flows, using singularities for
incompressible cases (Murugesan and Railly, 1969, Ubaldi, 1984, Van den Braembussche et
al., 1989) and the odograph plane (Bauer et al., 1972, Sanz, 1984) or the potential-stream
function plane (Stanitz, 1953, Schmidt, 1980) for the compressible cases. The last methods
are not very accurate in the stagnation point region and are unable to predict shocks. It is
therefore questionable whether blades designed in this way for shock-free transonic flows are
shock-free in reality.

Non potential flow fields require solving the Euler equations. Such methods are capable of
treating shocks correctly and are therefore suited to verify shock-free designs. They are mostly
used in iterative procedures and require a first guess of the blade shape. This initial geometry
is modified from the results of a flow analysis until the imposed pressure or velocity distribution
is reached. The blade modifications can be calculated in a pure mathematical way, in order to
minimize an error function, eg. depending on the difference between the calculated pressure
distribution and the target (Vanderplaats, 1979, Hicks, 1981). Although these methods have
the capability to respect geometrical constraints, they are still very expensive in terms of CPU
time, because many iterations and flow analyses are required.

The blade modification can be determined in a more physical way, resulting in decrease in
CPU time. The present method imposes the required Mach number distribution as a boundary
condition on the blade wall and uses the concept of a permeable wall to define the modification
of the geometry. This approach allows a reduction of the number of blade modifications, and
consequently of the number of mesh generations. The method has proven to be very efficient
in subsonic and transonic applications (L6onard, 1990, Leor.ard and Van den Braembussche,
1991). As shown in this paper, the iterative procedure makes it easier to meet geometrical and

Lmechaniical constraints imposed in industrial applications, and to find out whether a realistic
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blade sh~e corresp6nds to the required, Mach number distribution. Another. advantage of-th .

present method is the possibility-of using !he Same code for the blade -design procedure as well
as-for the off-design. analysis.

THE EULER SOLVER

The system of Euler equations for unsteady flows is solved using a time marching procedure
and a finite volume approach. The numerical domain is discretized using C grids, for a good
description of the leading edge geometry (fig.1). The unknowns are located at the vertices of
the mesh cells, in such a way tc, avoid extrapolation towards the blade wall. The code can
handle open trailing edges, in order to allow additional degrees of freedom in the geometrical
definition of the blades. This makes the problem of solution existence easier to solve and
allows a sufficient blade thickness to contain the boundary layer.

The equations are integrated in time using a Runge-Kutta first order accurate scheme,
with local time-stepping, enthalpy damping and implicit residual averaging to accelerate the
convergence. A detailed description of the solver may be found in L6onard (1990).

CALCULATION OF THE UNKNOWNS ON THE BLADE WALL

The method developed by the authors is an "iterative inverse method", in which the final
geometry is the result of the flow calculation, imposing the required Mach number distribution
on the blade wall. It has to be iterative since the location of this boundary is part of the
solution, approximated at the beginning of the design procedure by any convenient initial
geometry. There is no reason that the flow remains tangent to this geometry during the
calculation, except in two cases, when the blade "is" the solution of the problem or when the
blade wall is modified in order to respect the slip condition, as the time marching procedure
iterates to the steady state.

Methods based on the second case have been proposed by Meauz6 (1982), Giles and Drela
(1987), and Zannetti et al. (1984). This approach has not been considered here since a
minimum of successive blade modifications and corresponding mesh generations is desired.
The blade wall must therefore be treated as permeable to the flow field. After convergence of
the time marching procedure, the flow calculation results in a distribution of a normal velocity
component on the blade wall that is used to modify the geometry.

The calculation of the unknowns at a boundary i3 dominated by the mathematical nature
and the physical properties of the system of equations. As the Euler unsteady equations
are hyperbolic, the solution can be constructed, at any location in the calculation domain
(including the boundaries) using the information propagating in directions perpendicular to
characteristic surfaces. The eigenvalues of the Jacobian matrices of the Euler system, projected
in a considered direction i, are Vn, V, V + a and Vt - a, and define the propagation
speeds in that direction. If the vector n- is chosen perpendicular and entering the blade wall, a
positive speed means that the information is propagated on the wave front, in the ii direction,
from the inside of the calculation domain to the outside, and is therefore available to calculate
the value of the unknowns at this point of the blade wall. On the other hand, a negative speed
means that the information comes from the outside of the numerical domain and propagates
towards the inside. This entering information has to be provided by a boundary condition at
the boundary point.
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If the slip condition is imposed on the blade wall (Vi" = 0) only the speed Vr- a is negative
and therefore only one boundary condition must be imposed, i.e. the velocity direction at that
point. This shows that the slip condition can not be imposed together with the Mach number
value, at least for a fixed blade wall.

On the other hand, if the static pressure p (or the Mach number) is imposed on the blade,
a velocity component normal to the blade can appear and, depending on its sign, 1 or 3
eigenvalues will be negative and 0 or 2 additional conditions must be imposed. The sign of
this normal velocity component can be determined as a function of the imposed static pressure,
using the compatibility relation corresponding to the only eigenvalue which is always positive
(V+ a).

If the normal velocity is positive, one boundary condition (the required static pressure)
must be imposed, since only one eigenvalue (V, - a) is negative. The additional informa-
tion necessary to calculate all the unknowns at the boundary can be provided by the two
compatibility relations corresponding to V,, and V since they are positive.

If the normal velocity is negative, two additional boundary conditions must be imposed.
The best results have been obtained by imposing the total prcssure and total temperature at
that point. Imposing the latter does not give any special problem, since in a blade-to-blade
calculation it is supposed to remain equal to the total temperature at the inlet. Imposing
the total pressure is not so straightforward because of numerical dissipation. This problem is
solved by imposing the value of the total pressure from the previous time level in such a way
that the total pressure can adapt to the new flow field. This is important when a shock-free
design is performed starting from a blade for which a shock was present in the original flow
field, since in this case the initial and final total pressure distributions on the blade wall can
be very different from each other. A detailed derivation of the compatibility relations can be
found in Leonard (1990).

MODIFICATION OF THE GEOMETRY

A new geometry must be found since the initial shape no longer corresponds to a streamline.
The modification algorithm is based on a transpiration model and calculates the position of
the new streamlines using the velocity component normal to the initial blade (Leonard, 1990)
The modification starts at the stagnation point, and is performed separately for the pressure
side and the suction side. The new suction and pressure sides are defined as streamlines of the
flow satisfying the Euler equations, and therefore can not cross each other. This guarantees a
blade with positive thickness if the numerical integration procedure and the normal velocity
calculation are sufficiently accurate.

RESULTS

The first example illustrates the accuracy of the method for shock-free transonic flows by
applying it to the supercritical compressor blade designed by Sanz (1984) with an odograph
method, and proposed as a test case for inviscid calculation methods in AGARD-AR-275 (fig.
2a). Analysis of the flow with the present method shows discrepancies on the suction side
Mach number distribution (fig. 2b) similar to the ones observed by Denton (1983).

L The geometry calculated by Sanz has been redesigned using the present method in order
_j
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to 6btaiii the shock-free Mach number distribution imposed by Sanz as the input data ofhis
design (fig. 2c). Only one, modification of the geometry has been necessary to obtain good
agreement (fig. 2d). The difference between the initial geometry designed by Sanz and the
one designed with the present method is very small. This example suggests that the original
geometry defined by Sanz may not be shock-free, and illustrates how supersonic flows are very
sensitive to geometry changes.

A second example illustrates the design of a shock-free compressor blade, using a NACA-65
(12A2Isb)10 as an initial geometry. This blade is not suited to transonic flows, and a strong
shock is present in the flow field. Therefore large geometry modifications are expected. The
flow conditions are: All = 0.8, p0 =1.33 bar, Tf = 341.5 K, f - 'IV' dcg, M 2 = 0.5. The
cascade geometry is defined by a stagger angle of 31 deg and a solidity of 1.

In a first design, only the suction side Mach number distribution has been modified. The
initial distribution is compared to the shock-free required distribution in figure 3a. Good
agreement between the calculated and the imposed Mach number distributions is obtained
after 4 blade modifications (fig. 3b). The final blade is compared to the NACA-65 blade in
figure 3c. One observes a thick leading edge, due to the velocity peak in the pressure side
leading edge region. This is not desirable because it leads to strong diffusion and subsequent
flow separation along the pressure side, as predicted by a boundary layer calculation.

A second design has been performed, starting also from the NACA-65 blade, but by modi-
fying both the pressure and suction side Mach number distributions (fig. 4a). Decreasing the
pressure side velocity in the leading edge region results in a lower average velocity, and in a
smaller leading edge thickness because continuity requires a smaller blade blockage. Conver-
gence to the required distribution is obtained after 3 modifications of tile geometry (fig. 4b).
The initial and final geometries are compared in figure 4c. One can observe a thinner leading
edge and a shift of the maximum thickness location towards the middle of the blade.

Blade shapes designed by inviscid methods include the boundary layer blockage on the
pressure and suction sides. The physical blade geometry can be obtained by subtracting the
boundary layer displacement thickness from the so-called "inviscid" geometry. The minimum
thickness of the "inviscid" blade, required to contain the boundary layer, can be calculated as
a function of the target velocity distribution before the design procedure is started.

The analysis of the boundary layer for the prescribed Mach number distribution shown on
figure 4b indicates that the boundary layer thickness at the trailing edge is of the order of 5%
of the chord length, which is larger than the total trailing edge thickness of the blade shown
on figure 4c and makes this blade unphysical. Increasing the trailing edge thickness is possible
by increasing both the suction and pressure side Mach number distributions in the trailing
edge region by the same amount (fig. 5a). The circulation is unchanged, resulting in the same
turning of the flow, but the bade thickness must increase to satisfy continuity. The redesigned
geometry is compared to the previous design in figure 5b and shows a larger trailing edge
thickness capable of enclosing the boundary layer and the mechanical thickness.

An off-design analysis of the second blade has been performed with the same solver, chang-
ing the incidence by ± 2 degrees (fig. 6a and 6b). One can observe that the shock reappears.
Although the flow field is no longer shock-free, the off-design behaviour of the new blade is
better than that of the initial geometry.

L J
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F The third example illustrates the redesign of a transonic turbine blade. The starting geom-
etry is taken from the workshop VKI-LS 82-05 (Arts, 1982). The flow conditions are: p0 = 1
bar, T,° = 278 K, #I = 0 deg, M2 = 1.1. The cascade geometry is defined by a stagger angle
of -60 deg and a solidity of 1.25.

The imposed shock-free Mach number distribution assures a monotonically increasing ve-
locity on the suction side (fig. 7a). Two modifications of the blade geometry are sufficient to
give good agreement between the calculated and the required Mach number distributions (fig.
7b). The original and final geometries are compared in figure (7c). Off-design distributions
are shown in figures 7d for an exit Mach number of 1.05 and 1.15 instead of 1.1.

The number of grid nodes used in the above examples ranges from 161x 15 to 199x 15. The
typical amount of CPU time for one blade modification is 15 minutes on an ALLIANT FX/8
computer with 5 processors.

CONCLUSIONS
The present method has been successfully used to design shock-free transonic blades. It

provides in few iterations results that could not be achieved using traditional direct methods
and empirical blade modifications.

The method combines the advantages of a pure inverse method, since the Mach number
distribution can be imposed on the blade wall, and the advantages of a direct method, allowing
good control of the geometrical parameters.

It has been shown how modifications of the required Mach number distribution influence
the blade geometry. Special attention was given to design trailing edges of sufficient thickness
to enclose the boundary layer blockage.

Off design analysis of designed geometries illustrate the difficulty of optimizing for more
than one operating point.
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VARIATIONAL FORMULATION OF HYBRID PROBLEMS

FOR FULLY 3-D TRANSONIC FLOW WITH SHOCKS IN ROTOR

Gao-Lian Liu, Professor & Director
Laboratory of Turbomachinery Aerodynamics
Shanghai Institute of Mechanical Engineering

516 Jun-Gong Rd, Shanghai 200093, China

ABSTRACT:

Based on Refs 13,41, the unified variable-domain variational theory of hybrid
problems for rotor-flow 11,21 is extended to fully 3-D transonic rotor-flow with
shocks, unifying and generalizing the direct and inverse problems. Three
variational principle (VP) families have been established. All unknown boundaries
and flow discontinuities (such as shocks, free trailing vortex sheets) are
successfully handled via functional variations with variable domain, converting
almost all boundary and interface conditions, including the Rankine-]lugoniot shock
relations, into natural ones. This theory provides a series of novel ways for blade
design or modification and a rigorous theoretical basis for finite element
applications and also constitutes an important part of the optimal design theory of
rotor-bladings 161. Numerical solutions to subsonic flow by finite elements with
self-adapting nodes given in Refs[16,19,221 show good agreement with experimental
results.

NOMENCLATURE:

A total area of boundary surfaces.
A, inlet & outlet surfaces (Fig.1).
A2  periodic boundary surfaces (Fig.1): A2- A21 UA 2d , A?,,AUUA"2u

A2,=A. aU A"a.

A2d free trailing vortex sheets.

A, all solid boundary walls: A3=A.UAb,-AUA* ".

A, hub- & casing annular walls: Aa- A*UA&° .

A, blade surfaces: A,-A'UA*.

dAr.,,.- components of elementary area dA in r-, o-, z- directions respectively,
d A '--- 4 .'

dA =dA-n .
As shock surfaces.
a sound speed.
C,W absolute, relative flow velocity respectively.
/Km specific heat ratio C/C), and m-=(r-l)
M relative Mach number.
n' outward normal unit vector.
p dimensionless pressure

L q mass flux pA.
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Fr,ep,z and 1rlpl2

cylindric coordinates fixed on rotor and the corresponding unit vectors.
Rs rothalpy & entropy.

s'6s boundary position vector & its variation.

dv elementary volume dv-rdodrdz.
0 potential function

angular speed of the rotor.
* -.

A., A& demensionless forms of C,W,U respectively.
P dimensionless density.

Subscripts:

a,b annular and blade walls respectively.
d,u downstream and upstream respectively.
m circumferentially averaged value.
n,-r normal & tangential components.
pr prescribed.
rp,z radial, azimuthal and axial components respectively.
p pressure blade surface.
s suction blade surrace.

parameters on (A , , Azd) and (A". , A" ) respectively.
parameters just before & behind the interface or shock respectively.

Superscripts:

o restricted variation [101.
*,** known and unknown portions of the boundary respectively.

1. INTRODUCTION

Nowadays the design of advanced turbomadhinery would be impossible without
using advanced aerodynamic theory and thercupeon based computational methods.
During the last decade much progress has been made in this field and a detailed
state-of-the-art review is given in Refr.51, which reveals that with few exceptions,
e.g. Refs [1,2,11-171, most of work done to date, however, are concerned with the
direct (analysis) problem, quasi-3-D flow model and mainly finite difference, finite
volume and streamline curvature methods. Owing to the lack of exact (classical)
variational principles (VPs) for rotor-flow finite element methods (FEM) used so
far are exclusively based either on Galerkin approach or on approximate VPs for
the linearized problem. It is the great progress and the widespread and fruitful
applications of the FEM in solid mechanics that motivated the present author in
the mid 1970's to start a systematic search for VPs in fluid mechanics in general
[17,181 and in 3-D turbomachine flow theory in particular [1-4,8,11,121 with special
emphasis on inverse and hybrid problems in order to provide both a new rigorous,
sound theoretical foundation for FEM in computational aerodynamics of turbo-
machinery and a number of novel rational versatile ways for new blade design or
old blade modification. The hybrid problem is the one which, being a unification as
well as generalization of the traditional direct and inverse problems, is capable of
combining the merits of the two, while eliminating their shortcomings 11,2,111. As a
result, a lot of VP families have been established first for the direct problem [81[ and the hybrid problem [11-13,16] of quasi-3-D cascade flow. In extending them to j
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F fuly 3-D flow the major difficulties encountered were how to capture all possible 1'
unknown flow discontinuities, such as shock waves, free trailing, vortex sheets and
the unknown portions of the blade- and/or annular walls in inverse and hybrid
problems. Subsequently, a series of VPs in terms of potential or stream functions
for the direct problem of fully 3-D transonic potential and rotational flows with
shocks in rotors have been developed in Refs [3,41, and furthermore, a unified
variational theory of various hybrid problems for fully 3-D incompressible rotor
flow has been presented in Ref.[l1 and extended to compressible flow in Ref.121,
thereby a very powerful mathematical apparatus "the functional variation with
variable domain" being used to full advantage for handling abovementioned flow
discontinuities. Successful numerical validations of such a theory have been
carried out in Refs[16,19,223 by using a new finite element with self-adapting nodes.

In the present paper, based on Refs [3,41, the unified variable-domain
variational theory of hybrid problems for rotor-flow of Refs [1,2,161 is extended to
fully 3-D transonic flow with shock waves in rotors of axial, radial- and mixed-
flow types.

2. BASIC AEROTHERMODYNAMIC EQUATIONS

Consider the fully 3-D subsonic and transonic potential, steady relative flow of

an inviscid fluid past a rotating blading with constant angular speed W_' (Fig.l).
For such potential flows the nondimensional governing aerodynamic equations

have the following form [3,4,71:
Continuity equation:

.. .lt (prA!).(PA ).3(PrA ,) ..0v t -u (1)

lrrotationalty of the absolute flow:

34,, 3 "+r, (A1,*+A, A, (2)

First law of thermodynamics:

P+-L(A_2 -Au-l (3)

Homentropic equation:
p- P K(4)

Eliminating p in Eq.(3) via Eq.(4) yields:

p={1 - 1(A2 A) (3')2m

Using Eqs. (2) & (3'), a full potential equation can be obtained from Eq.(1)
[2,3,4,71:

(1 M2 2). -M3-_M ) 2MM, @" 6
- 3r2  r 2  (p 2 Z"8Z2 r 8ra

2MMr 324. b 2, +(M,+Mu) 2 .a0
________- -_ (5r 3rz r 8r

where

,o ,=ll--.__')_ ¢,_ A )I.+(aLO)2 4_ (3)

L 2m 3r r zo 
jz
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Mr-r/a=~t /o "m ,0
Mr=W r

MZ=Wz / a -T / P1 .
oZ

M~~w / ,i~ !2m
ML=ur/a=--A,,/p!12m

In the present paper, just as in Refs 11,21, the following three types of 3-1)
hybrid problems (HAXHA), (H/>'H) & (HIX1IA) are studied ii detail, where, as
defined in Refs 11,21, e.g. (HcXKHA) denotes'such a hybrid problem in which 8 hybrid
problem of type C (He) is posed on the blade surface, while a hybrid problem of
type A (HA) is posed on'the annular walls (Fig.2a). In other words, the first symbol
characterizes the problem type on the blade surface, while the second symbol ----
that on the annular wall. As for the hybrid problems HA 1 .1A, .... , they are defined
in Table- I for 2-D cascades 111,12,161, for the annular walls they are defined
similarly 11,21.

Table 1. Problem Classification (for the Blade Surface)

cypesl Given conditions
Geometric I Aerodynamic

HA Part of airfoil form j Pressure distribution along remaining part

t I Blade loading distribution (pp ---p.,)
1C Airfoil thickness 'Pressure distribution along suction surface

Ii, distribution Velocity difference distribution (As- Ap)

Scascae geometry none

none Pressure distribution along airfoil contour

Of course, the abovementioned three 3-D hybrid-problem types are only some
typical ones taken as examples for consideration herein. Generally speaking, 3-D
hybrid problems encompass a much wider variaty of types. They provides the
designer with a series of novel design tools, which enable him to choose the most
suited problem types or their combinations for meeting various practical design
conditions at hand (e.g. aerodynamics, cooling, strength-vibrational and
technological requiements etc). As pointed out in Ref.[1], the three hybrid problems
studied herein per se embrace also very comprehensive special cases, which, to a
large extent, are capable of fulfilling various practical requirements of blade design
and which can be made even much broader by posing different problem types on
different portions of the blade (or annular) wall (Fig.2b).

3. VP FAMILY FOR THE (HA..HA)-PROBLEM

In the development to follow, starting from the VPs for the direct problem
given in Refs [3,4] and employing the functional variation with variable domain J
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'11, 4J, we _resebit a unified variational theory, of hybrid problems Tor {ully 3-D

subsonic and"tra0isdhic fl6ws, with ,shocks.
Proceediiik -imilarly to ,ef'il kads 'to the following results "without going into-

details.

ME_: The solution to the (-lA :.HA);prdblem of' 3-D sub- and transonic rotor-flow

makes the functional J, stationary: 6J,-O, where 0, A **, A20, A, should be varied

independently.

J t(,A-',A.d,A,)-I,.+L+L AA, (6)

where

_J Jpdv- ' J 2_2. _.I_ - 2A

IV) IV)

L=J I(qn)p4¢'dA -1 I '" -'u)(pAn)'dA

-LAA4j J (Rr-)prsdA+J J (2)pr-d.
)A~

With all unknown boundaries or interface A3", A, and A20 treated by the method
of functionnal variations with variable domain [1,41 the Following set of
stationarity conditions for J, can be derived from 6J1 -0:

Euler's eq.: Eq.(5)
Natural boundary conditions (B.C.):

on A,: pA,,-(q,,)p,,
or, A2,: (pAJ'-(pAn)' , 9,"-'=A4WJ u

leading to the circumferential periodicity of all flow parameters.
on A 2 : (pA)'-(pA,J"-O, p' -p" ,

They are just the interface conditions on the free trailing vortex
sheets.

on A.: Using 4--04 as an essential (enforced) interface condition, we have
(a4'/a',-_(a4/a )+, that is, the tangential velocity components at
both sides of the shock are equal:

(A7L=(A7)4 (7a)

So we obtain the following natural interface conditions:
(p An)_-(P A,J)+ (7b)

(p /K+pA) Ir=(p,/+pAn)+ (7c)

In addition, from Eq.(3) we can write
R_=R+ (7d)

Obviously, Eq-s (7a)-(7d) are none other than the well-known
Rankine-Hugoniot shock relations [3,41.

on A3: pAn= 0 .

on A.: pA,,- 0, and Pm-(Pn),r

on A,*: pAr.= 0, and p-p, .

L Thus, it has been shown that from this VP I actually the full potential j
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F equation (5) together with almost all boundary conditions for the 3-D (HA >.HA)- 1
problem can be derived naturally, and all unknown surface .(e.g. shocks, free.
trailing vortex sheets and unknown walls) can be determined using e.g. FEM.

Applying a constraint-removing transformation [171, the above VP I can be
ex-tended to the following generalized VP(GVP).
GVP H.: The solution to the above 3-D (HA\HAl-problem makes the 'following
functional JH stationary: 6J1,=0, with independent variations of 4, .4, p, p, A$, A.
and A,,.

.i:A0,A,p,p.A!,*,As,A~d)_I1 +I.+I., (8)

where

-Il= 1 pA .V - -(A+AU+ ,J+T.{I-ln(p/p')]-mpldv
iv,

In a way similar to the above one it can be shown that from 6J -,0 the
following set of natural conditions results:
Eular's equations: Eqs (1)-(4).
Natural B.C.: All the same as those or vP I.

Subgeneralized VPs (SGVPs):
Via a constraint-recovering transformation 1171, from GVP II a family of

subgencralized VPs can be derived, one of which is the foregoing VP I.

4. VP FAMILY FOF THE (H3XHI'A)-PROBI3 F1M

In this case the B.C. on the annular walls remain the same as those of the
(HAXHA)-problem, while the B.C. on the blade surface become:
(i) Blade thickness distribution given by

,pp .- fp...-g(rz) (9A)

(ii) blade-loading distribution given by

Pr -P, gp(r,z) (913)

where gr(r,z) and gp(r,z) are prescribed functions.
Proceeding in just the same way as in the foregoing section, we can establish

the following VP family for the (GIXHA)-problem, which differs from that for the
(HA XHA)-problem only in that the boundary integral term LAA now should be
replaced by the following LBA:

L- JJ(LT),A-sdA+ Jgp s A (10)
A.) (Abbs

imposing Eq.(9A) as an essential B.C.. In Eq.(10) the symbol (Ab). stands for the
suction blade surface. In this way we obtain the following VP family.
VP Il: The solution to the (HBXIHA)-problem of 3-1) sub- and transonic rotor-flows
makes the functions JM1 stationary: 6JM1 .0, thereby 4b, A.*, A., A, and A2, should
be varied independently.

1(11J:H1(4,,A. ,At.,A.:;,A2d)=I, L+L ,(I

It is easy to verify that from 6J,1 1 4) the same Euler's equation and natural[ B.C. set as those of VP I can be derived with the only exception that the natural
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B (.C. on the blade surface A, -has now become Eq.(9B).
QVIJAV: The s6lution to -the abdxe 3-D (14EXfHA)-problem makes the following

functional JtV stationary: 6J,V-O with independent variations of .b, A, p, p, A', Ab,
A_ and A2d.

J ,vX,A,p,p,A, ,A,,A.,A 2d )Ii +L+1, , (12)

From 6J[-'0 the same Euler's equations and natural B.C. set as those in GVP 11
follow except only that the natural B.C. on the blade surface has become Eq. (911).
SC --_Ehmily: By means of a constraint-recovering transformation [171 a family of
SGVPs can be derived from the GVI' IV, including also the VP Ill.

5. VP FAMILY FOR THE (He/AHA)-PROBLLM

Here the B.C. on the annular walls still remain unchanged as before, while the
B.C. on the blade surface are now given as follows:
(i) blade thickness distribution given by Eq.(9A):
(ii) pressure distribution along the suction blade surface:

p.jp.(r,2)j,, (13)

To establish the VP family for the (IlC;',IIA)-problem, we proceed similarly as
above. It turns out that this VP family differs from that for the (HA,,HA)-problem
only in that the boundary integral term !.Al should be replaced by the following
L( .

(A:*) ,At)b

while the Eq.(9A) should be treated as an enforced B.C.. In Eq.(14) the superscript
'o' denotes that the 'restricted variation' 1101 should be taken. Thus, we have:

VL.V For the (HcXHA)-problem 6Jv0 with independent variations of 0, A:*, Ab, A.
and A?,, holds, and

Jv(4,A,',Ab,As,A 2d)-I 1+L+LcA, (15)

YILVIi For the (HcXHA)-problem 6Jv,-O with independent variations of 0, A, p, p,
A.", Ab, A and A2d holds, and

Jw(, ,A,p,p,A ,Ab,As,A2d)=1l!+L+L, (16)

SGVP I-ami1y Applying the constraint-recovering transformation [171, we can
derive a SGVP family for the (Hc)XHA)-problem from GVP VI, including also the VP
V.

It car be shown similarly as in previous sections that the Euler's equations
and the naturall B.C. sets of the VP V, GVP VI and its derived SGVP family are
the same as those of the VP I, GVP 11 and its derived SGVP family respectively,
except that the natural B.C. on the blade surface now has becoae Eq.(13).

6. SOME GENERAL REMARKS

L 1) It is easy to see that the traditional direct problem (DXD) [3,41 and inverse j
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F problem (XI) are simply two special cases of the (HA .XA)-problem, corresponding
to A .-. and A*-0 respectively. Accordingly, by setting A;'- .all VPs developed
herein reduce to those presented previously in Refs [3,41.

2) if, alternatively, the B.C. on the upstream periodic boundary A2 1 (namely
5'" '+_. , is imposed as essential B.C., the boundary integral terms on A2u

involved in L of all VPs should be dropped accordingly.
3) An alternatve approach to handling free trailing vortex sheets A.,d is also

possible by taking formally no variation of A2d, though A21 is unknown, but the
interface conditions on A2d (namely A-A;;-0, p'-p") are enforced as essential ones
[211.

4) As stressed in Ref'.1], sufficient attention should be paid to a rational
choice of the position-variation 6s- of the unknown boundaries A," and A~d for

facilitating the practical computation of (6s.dA) & 6Jj (i--l-,Vl). Some
recommendations on this point are available in Ref.[ll and, of course, also valid for
the present case.

For better shock-capturing a special finite element with self-adaptive build-in
discontinuities is very promising and is now being under development.

The numerical solutions to the problems [(H8+D)XI)] & [(Hc+D)X)] obtained
for subsonic flow by finite elements in Refs.1l9,22] show good agreement with
experimental results.

8. CONCLUSIONS

The unified theory of 3-1) hybrid problems of Refs 11,21 has been extended to
transonic flow with shocks. This theory is primarly aimed at providing, firstly, a
new rigorous theoretical basis of blade design for use in FEM and other direct
variational methods (e.g. Ritz's method, Kantorovich's method) and, secondly, a wide
variety of new rational versatile ways for new blade design and old blade
modification. It also constitutes an important ingredient of the optimal design
theory of 3-D rotor-bladings [61. Based on the VPs for the direct problem of 3-D
rotational flow [3,4], the present theory can be extended also to 3-1) rotational
flow. This wil! be presented in a companion paper.
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Aerodynamic Shape Optimization. of
Arbitrary Hypersonic Vehicles
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Abstract

A new method has been developed to optimize, in terms of aerodynamic wave drag
minimization, arbitrary (nonaxisymmetric) hypersonic vehicles in modified Newtonian flow, while
maintaining the initial volume and length of the vehicle. This new method utilized either a surface
fitted Fourier series to represent the vehicle's geometry or an independent point-motion algorithm.
In either case, the coefficients of the Fourier series or the spatial locations of the points defining
each cross section were varied and a numerical optimization algorithm based on a quasi-Newton
gradient search concept was used to determine the new optimal configuration. Results indicate a
significant decrease in aerodynamic wave drag for simple and complex geometries at relatively low
CPU costs. In the case of a cone, the results agreed well with known analytical optimum ogive
shapes. The procedurc is capable of accepting more complex flow field analysis codes.

Nomenclature

CP = surface pressure coefficient
CPO = stagnation pressure coefficient
p = static pressure at a point
p.* = free stream static pressure
M.* = free stream Mach number

On  = angle between free stream and normal to the surface of a vehicle
Am, Bm = coefficients of Fourier trigonometric series for coordinates at cross section i
x = Cartesian coordinate along the axis of the body
y, z = Cartesian coordinates of a contour point at cross section i
S = body cross section contour-following coordinate

T= normalized body cross section contour-following coordinate
y = specific heat ratio of the gas
A = area of a panel on the body surface

T = aerodynamic force applied to a panel
An = unit normal to the body surface
M = number of terms in the Fourier trigonometric series
S = least squares summation
FAC = percentage change in design variable

Subscripts
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i = ith cross section of the vehicle

j =jth point of a cross section contour

m = mth coefficient of a Fourier trigonometric series
n = angle between free stream and local body surface normal
00 = free stream value

Introduction

Although optimization of axisymmetric hypersonic bcdies has been accomplished in the
past [1,2], the aerodynamic drag minimization of an arbitrary hypersonic vehicle has not been
attempted [3]. The objective of this paper is to present an optimization procedure for arbitrarily
shaped hypersonic vehicles. While there are certainly some limitations in this paper, including the
choice of flow field solver and non-convergence for some shapes, it demonstrates that optimization
of numerous variables can indeed be done and that this can be applied to complex configurations.

In hypersonic flow (M. > 5.0), the flow around an object may be modeled using an impact
theory. In this theory, oncoming particles strike, or impact, the surface of the object and impart the
normal component of their momentum to that body. Classical Newtonian theory has been shown
to approach reality when the free stream Mach number approaches infinity and the value of the ratio
of specific heats approaches y =1 [4]. In the case of lower hypersonic Mach numbers, modified
Newtonian theory has been shown to be quite satisfactory for predicting the aerodynamic forces
and moments on a body [5]. Modified Newtonian theory has the main advantage of being
extremely simple, accurate [6], and fast when faced with the thousands of flow field calculations
needed in an optimization problem of this scope. Because of the use of modified Newtonian
theory, it was implicitly assumed that the flow field was inviscid.

In this study, modified Newtonian impact flow theory was used with a modified
Newtonian constrained search optimization routine [7] to obtain vehicle shapes which had
significantly lower wave drag in inviscid hypersonic flow. In the first part of the study, cross
section coordinates of the body were represented with curve-fitted Fourier series. Curve-fitted
Chebyshev series [8] were initially considered, but it was found that the Fourier series represented
complex shapes, such as a Space Shuttle configuration, better than the Chebyshev series. The
coefficients of the Fourier series, one set representing the y coordinate and one set for the z
coordinate (Fig. 1), then became the design variables that were fed to the optimization routine. The
optimization routine sequentially perturbed each of the coefficients by a small amount and
determined the new shape that reduced wave drag while keeping the volume and length of the
vehicle constant. In the second part of the study, the y and z coordinates of the vehicle's cross
section were used as the design variables directly. Again, the optimization routine perturbed
separately each of the coordinates at each of the cross section contour points. Then, it combined
the changes into a new shape with lower wave drag while still honoring the constraints of constant
volume and constant length of the vehicle.

Numerical Models

The first part of this investigation used a least squares Fourier series curve fit to represent
the y and z coordinates of each half cross section, i , that is,

M

Yi= I Ami cOs[(m-l)ntsij~] (1)
rn-1



#" oi n n i n I IIn

M,

= Bmi sintit*iji (2)
M-1

where'-ij is a normalized contour-following coordinate (Fig. 1) such that
S. -st3

Si~j = Si'j. + 4 (yi'j-yi'j.1) 2 + (Zi'j-Zi'j.1) 2  and =j  (3)
Si,jmax

and Ami is determined from the least squares fit of the Fourier series

jmax

Si = ( (Ami cos[(m-l)ijI) - yi,j) 2  and -0. (4)

j-l

The coefficients Bmni are determined in a similar way. Since it was assumed that the vehicle had a
vertical plane of symmetry, the z-coordinates of the first (j=l) and the last (j=jmax) point of each
half cross section were always zero thus ensuring symmetry across the y-axis.

The local surface pressure coefficient, Cpij, was calculated by the use of modified
Newtonian impact flow theory, which states that

Cpij = CpO cos2en,ij (5)

where 0n,ij is the angle between the free stream and the normal to the surface. The stagnation
pressure coefficient, CPO, is given by

-=2[ -+ 1 +12-- (6)

PO yM2  2yM y+ I M:

The pressure on a given segment of the body may then be calculated from the rearranged formula
for Cpj, that is

1pi~yP M2

Pij = P**+ 21 C0 i 0.. (7)

The aerodynamic force on each surface panel is found by

Fjj -Pij A ij nij• (8)

so that the resultant force is obtained by summing up all of the panel forces

Ftotal = ij (9)
iJ

Aerodynamic wave drag was then the x-component of the resultant aerodynamic force.
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The optimization algorithm perturbed each of the Fourier coefficients to obtain a slightly
different shape. After perturbing all of the coefficients and analyzing these new perturbed shapes,
the optimization algorithm combined the changes into a new shape that met the constraints of
constant volume and constant length, but which had a reduced aerodynamic wave drag.

The second part of the study was exactly the same as the first except that instead of
working with the Fourier series coefficients we worked with the y and z coordinates of the crois
sections' points directly.

Results

Four test cases were run for each part of this study. They consisted of a straight cone
having circular cross section shapes, a straight cone having a four pointed star as a cross section, a
stubby-wing shaped body and a Space Shuttle-like configuration. All cases were run at an angle of
attack of 0', a specific heat ratio of 'y= 1.4 and a free stream Mach number of M. =10. Notice that

the values for y and M.* appear in CPO which may be factored out of the pressure coefficient ratio.
They affect the numerical amount of drag, but not the qualitative amount of drag. The x-axis for
each case was chosen to coincide with the long axis of the body. The y and z-axes were then
mutually perpendicular to the x-axis.

Fourier Series Algorithm: For the initial part of the study, twenty terms in a Fourier
series for y and z coordinates were used for seven cross sections. Twenty terms were chosen
because of the constraints of computational facilities (an IBM 3090 was used) and because twenty
terms were able to represent the geometries of all four test cases, including the complex Space
Shuttle shape. Only six of the cross sections were allowed to deform; the nose cross section was
kept constant to serve as a tip. Thus there were 6 x 20 x 2 = 240 design variables. Twenty-five
points were used per cross section; thus, the half body was discretized into 6 x 24 = 144 panels.
FAC, the percent perturbation of Am and Bmi in the optimization algortihm, was set equal to 5%.

For the case of a right circular cone (Fig. 2), after a total of 43 iterations, the program
converged to an ogive configuration that had 47.96% less wave drag than the original conical
configuration. Note that horizontal and vertical symmetry were maintained.

The next shape tested was a four pointed star configuration (Fig. 3). The aerodynamic
wave drag of this shape was reduced by 39.16% after 43 iterations. This case did not converge
due to "fishtailing" of the fins and was terminated just before such fishtailing occurred. Note the
streaking near the nose and the thinning of the points on the last cross section. Also, notice that
vertical and horizontal symmetry was maintained and the fins gave an ogiving contour.

The third shape optimized was that of a "stubby wing" configuration (Fig. 4). The wave
drag was reduced by 64.62% when the algorithm converged after 53 iterations while preserving
the cross-axis symmetry. Again, note the streaking toward the nose and the smooth appearance of
four small fins along the wing tip line.

The fourth test case was that of a Space Shuttle configuration (Fig. 5). After 22 iterations,
the wing surface crossed itself and the process was terminated. Aerodynamic wave drag was
reduced by 18.52%. With careful scrutiny, one can notice that the centerbody has become ogived,
the wing thickness has been reduced, the wing roots have become filleted, and the underside of the
fuselage has been reduced in size.

The convergence histories (Fig. 6) indicate that the general trend is a monotonic decrease in
drag. This trend can also be seen from the drag plot (Fig. 7) which shows the percentage of
original drag remaining at a given iteration number (Table 1).

Point-Motion Algorithm: For the point-motion algorithm, 21 points per half cross
section were used. Only six cross sections were analyzed due to computer storage limitations.
With only five cross sections being active, this yielded 2 x 5 x 21 = 210 design variables and 5 x
20 =100 surface panels per half cross section. FAC for this algorithm was set to 0.1%.
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Numerical optimization of a straight circular cone resulted in an ogive shape with
axisymmetry successfully maintained. After 49 iterations, the shape converged to that of Fig. 8
with a corresponding decrease in drag of 45.37%.

The second shape was the four pointed star. With the point-motion algorithm, the shape
converged after 35 iterations to that pictured in Fig. 8. There was a reduction of drag of 34.65%.
As in the case of the circular cone, symmetry was maintained across both the y and z-axes. The
resulting shape is very similar to that obtained by the coefficient algorithm. Considerably less
streaking can be seen near the nose of the star, while the fin planforms exibited significant ogiving.

The next shape optimized was the "stubby wing". The fin tips, after 24 iterations, crossed
themselves and the process was terminated. However, a decrease of 40.58% of the original wave
drag was achieved just before the shape cross-over. Note the development of the fins along the
side of the vehicle (Fig. 8) and streaks near the nose, somewhat similar to those developed when
using the coefficient algorithm. Once again, symmetry was maintained.

The final case for the point motion algorithm was the Space Shuttle vehicle (Fig. 8).
Similar to the case in the coefficient algorithm, the wing eventually crossed itself and the run was
terminated. A decrease in drag of 27.38% was found after 16 iterations preceding the cross-over.

For the point-motion algorithm, the convergence histories (Fig. 9) indicate monotonic
decrease in wave drag for all four test configurations. Figure 10 demonstrates the total reduction in
wave drag for the four test configurations when using the point-motion algorithm (Table 2).

A comparison (Figs. 11 and 12) of the numerically optimized ogive shapes with
analytically optimal ogives obtained by Sears and Haack and by von Karman [9] demonstrates the
reliability and accuracy of the numerical optimization algorithms.

Conclusions

Two procedures, a coefficient algorithm and a point-motion algorithm, for aerodynamically
optimizing aribitrarily shaped hypersonic vehicles have been shown to significantly reduce
aerodynamic wave drag while keeping the vehicle's volume and length constant. Both
formulations are very fast only because a modified Newtonian flow theory was used as the flow
field analysis algorithm. These formulations would be very effective as preliminary design tools
for unconventional hypersonic vehicles. The point motion algorithm can be used to keep parts of
the original vehicle fixed, such as cabin size or wing thickness, during the optimization. More
sophisticated flow field solvers that include viscosity and the effects of heat transfer could be
substituted in place of the modified Newtonian theory during the final stages of the optimization.
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Coefficient Test Case Drag Reduction (%) # of Optimization # of Analysis Calls
Cycles

Cone 47.96 43 10493Star 39.16 43 10493
Stubby wing 64.62 53 12689

Space Shuttle 118.52 22 5125

Table 1. Drag reduction, number of optimization cycles and analysis calls for the coefficient test
cases that uses Fourier series representation.

Point-Motion Test Drag Reduction (%) # of Optimization # of Analysis Calls
Case Cycles
Cone 45.37% 49 10273
Star 34.65 35 7277
Stubby wing 40.58 24 4923
Space Shuttle 27.38 16 3211

Table 2. Drag reduction, number of optimization cycles and analysis calls for the point-motion test
cases.
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Z

j=jmax

Figure 1. Cross section contour-following coordinate system.
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Figure 2. Straight circular cone shape; coefficient algorithm: a) initial shape, b) final shape.

a) initial b) final

Figure 3. Four pointed star shape; coefficient algorithm: a) initial shape, b) final shape.
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a) initial b) final

Figure 4. Stubby wing shape; coefficient algorithm: a) initial shape, b) final shape.

a) initial

b) final

Figure 5. Space Shuttle-like shape; coefficient algorithm: a) initial shape, b) final shape.
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Figure 8. Optimized shapes obtained with the point-motion algorithm.
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Figure 11. Comparison of analytically optimized ogives and a numerically optimized ogive using
coefficient algorithm.
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Figure 12. Comparison of analytically optimized ogives and a numerically optimized ogive using
point-motion algorithm.
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USING STREAMWISE COORDINATES
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Department of Mathematics and Statistics
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Abstract. In this work, a new approach is developed for analysis and design of tran-
sonic airfoils. A set of full-potential-equivalent equations in von Mises coordinates
is formulated from the Euler equations under the irrotationality and isentropic as-
sumptions. This set is composed of a main equation for the main variable y, and
a secondary equation for the secondary variable R. The main equation is solved by
type-dependent differencing combined with a shock point operator. The secondary
equation is solved by marching from a non-characteristic boundary. Sample compu-
tations on NACA 0012 and biconvex airfoils show that, for the analysis problem, the
present approach achieves good agreement with experimental Cp distributions. For
the design problem, the approach leads to a simple numerical algorithm in which Zhe
airfoil contour is calculated as a part of the flow field solution.

1. Introduction
Transonic flow is a widely encountered phenomenon in aeronautics and astronau-

tics but is not easy to calculate because the flow field, and the governing equations
as well, are mixed type. Therefore, transonic computation had little progress until
1971 when Murman and Cole developed a type-dependent difference scheme and
successfully solved the transonic small disturbance (TSD) equation[1]. Since then,
transonic computation has become one of the most upsurging topics for computa-
tional fluid dynamicists[2-8]. In 1974, Jameson extended transonic flow computa-
tion to the full potential (FP) stage by constructing a rotated difference scheme[4].
Afterwards, papers were published on transonic computation by solving Euler equa-
tions[5,6] and their equivalent streamfunction-vorticity formulation[7,8]. Neverthe-
less, in spite of the recent active efforts on Euler solvers, the full potential calculation
is still attractive due to its simplicity, efficiency and sufficient accuracy.

The von Mises transformation is a type of streamline-based transformation which
generates a streamwise coordinate system. The von Mises formulation has a number
of advantages when applied in CFD. For example, one can resolve the problem of
body-fitting coordinates without performing any grid generation. This is because
the governing equation (flow physics) and grid generation equation (flow geometry)
are combined together in this formulation. Furthermore, the boundary condition on
the airfoil for the analysis problem is Dirichlet, and a non-iterative design technique

L j
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F can be developed for the inverse problem, leading to simplified numerical algorithms
and a saving of computer time. Therefore, since Barron[9] connected the von Mises
transformation with Martin's approach[10] and solved incompressible 2-D symmet-
ric flow, numerical simulations based on the von Mises transformation have been
considerably extended, such as to incompressible lifting[11], axisymmetric[12] and
design[13] problems, and to transonic flow[14,15]. In addition, Greywall[16] and
Dulikravich[17] obtained a similar formulation for incompressible and compressible
flows, respectively.

However, when extending Barron's approach[9] to transonic flow, several prob-
lems appear. For compressible flow, apart from the von Mises variable y, another
variable, the density p, must be updated in each iteration. But in the transonic
range, the classical difficulty of double value density-massflux relation still exists.
Besides, shock waves are not easy to handle in von Mises coordinates either by
the artificial density technique or by type-dependent differencing. Recently, the
authors[18] developed a new approach to overcome these difficulties by solving so-
called full-potential-equivalent equations in von Mises coordinates. The principal
advances over the previous transonic work[14,15] are as follows: 1) To update den-
sity, instead of solving the non-linear algebraic Bernoulli equation, a first order
partial differential equation is solved, thereby avoiding the double density problem;
2) To handle shock waves properly, a shock point operator in von Mises coordinates
is proposed and combined with the type-dependent difference scheme so that shock
waves can be captured correctly; 3) Introducing a concept of generalized density
linearizes the density equation.

In the next section, an outline of the mathematical formulation is given. The
numerical algorithms for analysis and design problems are constructed in sections 3
and 4. In section 5, sample computations are performed to test the approach, and
conclusions are given in section 6.

2. Flow Equations in Streamwise Coordinates
Two dimensional, steady, inviscid fluid flows are governed by the Euler equations( Pu Pv

PU2 + U (2-1)
,("<'],=V 2 + +.):

puH /

where p is density, u and v are velocity components in Cartesian coordinates, p is
pressure, H = '-jP/p + (u2 + v2 )/2 is total enthalpy and -y is the ratio of specific
heats. p, u, v and p are normalized by free stream density p,, speed q, and dynamic
pressure head pq while x and y are scaled by the airfoil chord length.

Introducing streamfunction 0, such that 4b, = pu,o =, -pv and substituting
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F- into equation (2 - 1), one gets | .

-O-'/p + Ok,/p+p =0 . (2-2)
OjfH ) -frH/

Streamfunction 0t = O(x,y) can be rewritten in an implicit form, F(z,y,b) = 0,
or in an explicit form, y = y(X,O). This process is equivalent to introducing von
Mises transformation: x 4,y = y(0,0). If the Jacobian J = 0(,y)/(4) #
0, oo, then the transformation is single-valued and (2 - 2) becomes

Y/(PYO) )( =0 (2-3)

where the total enthalpy H = "-,plp + (1 + y')/(2p2 y2,). The streamline ordinate
y, called von Mises variable, is viewed as a function of 0 and -0. The velocity
components can be easily calculated from u = 1/(pyp),v = yo/(py¢), after y and p
are solved.

It is known that the entropy increase across a shock wave is of third order of
the shock strength. So, if the shock is not strong, transonic flow can be assumed
isentropic and irrotational. Replacing the energy equation in (2-3) by the isentropic
relation and keeping in mind that x -, we reduce (2 - 3) to

1
(- + PY,). - (PY-), = 0, (2-4a)

PY0

(=z-), + P, 0, (2-4b)

P = M£'t (2-4c)

(I +'-'z'€ = 0 (2-4d)

P N

where M. is free stream Mach number and the last equation is the irrotationality
condition, w = 0, expressed in von Mises coordinates. Substituting (2 - 4c) into
(2 - 4a) and (2 - 4b) and expanding (2 - 4d), we get

-Y&+Y2P--+ 1)-- yy P ' I 0P (2-5a)

Pz 2 p+ 0yOy,= - yXYz - Yz!Y/p + y-- =, (2-5b)
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oyz- 2yyyp+ (1 + Yyiptb PY1  + yo(l 2YP0~ 0. (2-5c)
p P /

Properly manipulating the above three equations can produce several sets of equa-
tions. Each set has two independent equations for two variables. To make the
formulation more compact, define generalized density R = p-+l as an alternative
to density p. Solving for pz/p and pp/p from (2 - 5a)and (2 - 5b), and substituting
into (2 - 5c), one gets

(Y,2 M)yzz - 2yyty' + (1 + y4)y¢ 0.
'). -2~oyp+(2-6a)

Eliminating yo from (2 - 5a) and (2 - 5b) gives

YZY 2R - yp(1 + y2)RO = (7t + 1)M2y.,. (2-6b)

Equation (2 - 5a) can be rewritten as

Y0(2 _M 2 2yp
R- - YZYO = (-I + 1)M s y . (2-6c)

Substituting the above Yz,!y.¢ into (2 - 5c) and replacing p by R, one obtains

+Y2 -  2 )R =( 7 + )M y -Y . (2-6d)
My R R +y~l x R y R +1M y 2 6d

It is important to note that (2 - 6b) is linear after introducing the new variable R.
The term M.2/R is usually called compressibility factor.

In principle, any two of the above four equations could be combined as a set of
equations to solve for y and R. But, in practice, equation (2- 6a) is always selected
to solve for y and one of the remaining three equations is selected to solve for R.
Equation (2-6a) is a second order, non-linear, partial differential equation of mixed
type depending on the local flow property. If the flow is subsonic/supersonic, then

(2 - 6a) is elliptic/hyperbolic. In other words, the mathematical classification of the
equation is consistent with the physical nature of the local flow. Therefore, (2 - 6a)
is named the main equation for the corresponding main variable y. Equations (2 -
6b) - (2 - 6d) are called secondary equations for the secondary variable R. Among
the three secondary equations, (2 - 6b) appears simpler because it is linear and
hence priority is given to it to accompany the main equation. The main equation
(2 - 6a) and one of the secondary equations (2 - 6b) - (2 - 6d) constitute a set
of so-called full-potential-equivalent equations. They are coupled with each other
and solved in an alternating and iterative manner. More details and other forms of
full-potential-equivalent equations can be found in [18].
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3. Analysis Problem
For a symmetric airfoil placed in a transonic stream at zero angle of attack, the

governing equations (2 - 6a) and (2 - 6b) can be rewritten as

Alyrz + A 2yzO + A3yOO = 0, (3-1)

B1R, + B2Rp = B 3  (3-2)

where A, = y - Mm/R, A 2 = -2yy¢,A 3 = 1 + y ,B, = yzu4,B 2 = -yO(1 +

y/), B 3 = (f + 1)M2y.z. The boundary conditions on y are Dirichlet: y = f(x)
on the airfoil, y = -b at infinity, y = 0 on the symmetry line and R = 1 at infinity,
where f(x) is the airfoil shape function. The computational domain and boundary
conditions are shown in Fig.1.

Since the mathematical character of (3 - 1) depends on the local flow property,
it is necessary to apply Murman and Cole's type-dependent scheme[l] to solve for
y. Applying the type-dependent difference scheme to (3 - 1) gives

Ayi,.-l + Byj,. + Cyi,.i+ = RHS (3-3)

where A = P2 A3 - '-P/A2,B = -2# 2A3 + (1 - 3v)AI,C = 32A3 + Lj--A 2 ,

RHS = - zAI(yi+1,. + i-i,j) + (1 - v)A 1(2yi-.,j - Yi-2,j)

- vPA2 (yi+i ,+l - Yi+.,j-1 - Yi-i,j+ + yi-ji-,)/4
+ (1 - v)3A2(y-..ij+i - yj- ,.i-)/2,

and .= Az/A, for i = 2, 3 ,...,Imax, - 1,j = 2 , 3 ,...,Jmax - 1. The switch
parameter v = 1 for a subsonic point, v = 0 for a supersonic point. The resulting
system of difference equations (3 - 3) has a tridiagonal coefficient matrix so that
SLOR can be applied by relaxing along vertical lines, sweeping from left to right
and iterating up to convergence. (see Fig.1)

After y(z, t) is solved from the main equation (3-1) and y., yo, y., are properly
differenced, the secondary equation (3 - 2) can be solved for R(z, b) by marching
from an initial line other than its characteristic curve. The slope of its characteristic
curve is d/dz = -(1 + yl)/(yy). At infinity, dp/dx = oo. Thus, left and right
far field boundaries are characteristic curves and hence cannot serve as initial lines.
Fortunately, the horizontal boundary is not a characteristic and we can march
equation (3 - 2) from the top boundary to the airfoil using the condition R = 1 at
infinity.

The Crank-Nicolson scheme for (3 - 2) gives

A.i,j + B.i, + CR,+lj = RHS (3-4)
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F where RH-S = CRi-j+i + BR,,+ 1 +.Ri+l 1 j+l + 4AxB 3 ,.A = -Bi, B = -4,6B,

C = B 1,P = AIAVP for j = Jmaz - 1,...,3,2, 1,i = 2,3,...,Ima'z - 1. The system
of difference equations (3- 4) can be solved row by row from the horizontal far field
to the airfoil using SLOR, but no iteration is needed because (3 - 2) is linear. After
R is solved, the pressure coefficient is calculated from

= 2 (R+_2 -1). (3-5)

However, it has been found after numerical tests that this procedure is efficient
only for flow in which the shock is weak. For flow with a stronger shock, the itera-
tions fail to converge. To overcome this difficulty, a special treatment of the shock
wave is proposed following the ideas of Murman's shock structure analysis[2,3]. For
usual transonic flows, the shock wave is approximately normal and the shock jump
conditions are given by

[P] = O, [yO] = 0. (3-6)

where [I. represents a jump across the shock. Based on this analysis, the difference
quotient approximations to yrz, YX at a shock point, i.e. grid point just behind the
shock, are constructed as below:

(!hz)i,j - ' -2(Yi+l,j - NJ - ajJi-1,j + aj!i-2,j) (3-7a)

(!i+lj+l - !i+lj-1 + Yij+, - Yi~j-1

- 3 !i-1,j+l + 3 yi-j-i + !/i-2,j+1 - Yi-2,j-1). (3-7b)

where a is the density jump factor on jh streamline and given by the Rankine-
Hugoniot relation of a normal shock. (3 - 7a) and (3 - 7b) are called shock point
operator (SPO) in von Mises coordinates. The difference equations (3 - 3) for y
and (3 - 4) for R are modified using SPO. Numerical experimentation has shown
that SPO must be applied in the y,,,,y., terms of the main equation (3 - 1) and
in the B 3 term of the secondary equation (3 - 2). SPO is a crucial tool to capture
shock waves in supercritical transonic flows.

4. Design Problem
Similar to the analysis problem, the main equation (2- 6a) and secondary equa-

tions (2 - 6b) or (2 - 6c) can be solved for y and R alternatively:

Aaly. + A2Y,O - A3YJO, = 0, (4-1a)

L j



365 "

Third.Ihternadonal Corfre c on Inverse Dsign ConhcpLs and QpO'iniztoin Engineeiing$cr ie -n -
: ~ ~(iiDESTfl. Edit6r G.S:-Dulikravchgwashihi' !tonrD.C;..Octobei'23 -2S 1991:. .. ' ...

BlR + B2R = B3, (4-1b)

DiR, + D2RO = D3  (4-1c)

where A, = y- M./R,A2 = -2y~yo,A 3  1 + y',B = y.y-,,B = -yO(l +
y.),B3 = (7 + 1)M.y.,,D1 = Y(Y-M./R),D = -yy,D = (-+ 1)M Y.
The boundary conditions are the same as in the analysis problem, except on the
airfoil, which is unknown. There, the pressure coefficient Cp, is specified, hence,
the generalized density is also specified:

R& = (1 + 3"M2Cp,/2)c'Y+1)/"  (4-2)

On the airfoil surface, the Bernoulli equation in von Mises coordinates leads to

F(x)y', 2 1= (4-3)

where
F(x) = (_1M (1 + ,co,- - Ro.

[(± . 2 M)R+ Rl

This is a Neumann boundary condition on the airfoil when solving (4 - la) for y.
(4 - 2) is a Dirichlet boundary condition on the airfiol when solving (4 - 1c) for R.
In addition, on a symmetry line off the airfoil, Re = 0.

If streamlines do not intesect each other on the airfoil, then yv > 0. and if, fur-

thermore, F(z) 0 0 on the airfoil, then equation (4-3) gives yp = V(1 + y2)/F(x).
For most practical transonic flows the required conditions are easily satisfied as long
as Cp, is reasonably specified. Differencing yp, we get

Yi,i = [4yi,2 -yi,3 - 2G(xi))/3 (4-4)

where G(z,) = A0 [1/ + (y2)i,1 j/F(xi). Considering this new boundary condition,
we modify system (3 - 3) as follows:

For j = 2, equation (3 - 3) reads Ayij + Byi,2 + Cyi,3 = R.HS. Substituting
(4 - 4) into it, we have

(B + 4A/3)yi,2 + (C - A/3)yi,3 = RHS + 2AG(zi)/3 (4-5)

Replacing the first equation in system (3-3) by (4-5), solving the resulting system
and applying (4 - 4), we can obtain the desired airfoil contour ff(xi) = yi,1 without
further iteration of the airfoil shape. The computational domain and boundary
conditions are shown in Fig. 2.

To solve for the secondary variable R, two secondary equations (4 - lb) and
(4 - 1c) are available. For equation (4 - lb), the marching procedure is the same
as in the analysis problem, while for equation (4 - 1c), the marching procedure is
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F different. The slbpe of its characteristic curve is d/dx = -(yy,)/(y2 M /R).
At infinity, dVI/dz = 0. So, the horizontal far field boundary' is a characteristic
curve, but the vertical boundaries are not. Therefore, the marching process can be
carried out from left to right.

Crank-Nicolson scheme for (4 - 1c) gives

ARRij,.- 1 + BRjj + CRi,j+l = RHS (4-6)

where R-S = CRi-j,-1 + BRi- 1 ,. + .Rj-jj+x + 4AzD 3, A = -3D 2,Bf = 4D1 ,
C = PD2 , = Ax/Ao, for i = 2, 3, ... , Imaz - 1,j = 2,3, ... , Jmax - 1.

For the first equation in system (4 - 6), the boundary conditions Rjj = R,(xi)
on the airfoil and Ri,1 = Ri,2 on symmetry line should be imposed. It is noted that
yx¢ in D3 should be type-dependent differenced with SPO to keep consistency with
the main equation.

Both (4-1b) and (4-i c) have been coupled with (4-la). Numerical experiments
have shown that (4 - 1c) gives better accuracy than (4 - lb). This is reasonable
because the boundary condition on the airfoil is considered not only in the main
equation (4-la), but also in the secondary equation (4-ic), while it is not suitably
considered in the secondary equation (4 - lb). However, the price to pay is more
iterations because (4 - 1c) is non-linear.

5. Sample Computations
The approach developed here is applied to calculated transonic flows for both

analysis and design problems. Only symmetric airfoils at zero angle of attack are
considered, but both subcritical and supercritical Mach numbers are included. In
the computational domain, a 65x33 uniform mesh covers -2 < z < 3, 0 < l < 2.5
and the airfoil is placed between 0 and 1. For higher Mach numbers, a 80x31 mesh
has been used. The computational domain and boundary conditions are shown in
Figuires 1 and 2.

Figures 3 and 4 are comparisons of calculated C,, distributions of NACA 0012 with
experimental data at NAE[19] for Mo = 0.490 and at ONERA[19] for Moo = 0.803.
Figure 5 indicates the calculated C. distribution of a 6 percent biconvex airfoil at
Moo = 0.909 compared with experimental data at NASA[20]. From these plots we
can see that the present approach is able to accurately predict Cp distributions on
airfoils in transonic flows. The agreement between computed pressure and available
experimental data is quite satisfactory. For supercritical transonic flows, the shock
wave can be captured by the presently proposed type-dependent scheme with SPO.

Figure 6 shows the designed contour of a 6 percent biconvex airfoil compared
with the exact shape[21]. The specified C,, distribution on the airfoil comes from
experiments at NASA[20] for M~, = 0.909. Figures 7 and 8 give designed NACA
0012 contours compared with the exact shape[21]. The specified C. is from NAE[19]
for Moo, = 0.490 and ONERA(19] for M. = 0.803. Here, we can see that the present
approach is capable of designing airfoil contours with satisfactory accuracy.
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6. Conclusions

1) The newly developed approach based on the full-potential-equivalent equations
in von Mises coordinates is able to solve transonic flows for both analysis and design
problems.

2) The full-potential-equivalent equations are composed of a main equation for
the corresponding main variable, streamline ordinate y, and a secondary equation
for the related secondary variable, generalized density R.

3) The type-dependent difference scheme with shock point operator is effective
to solve the main equation for y and the shock point operator is crucial to capture
shock waves in supercritical transonic flows.

4) The secondary equation can be solved for R by marching from a certain non-
characteristic, density-specified boundary. (rank-Nicolson scheme proves to be use-
ful to march such a equation.

5) For analysis problerns, the boundary condition on the airfoil is Dirichlet, which
is easy to implement.

6) For design problems, the airfoil contour can be obtained in a non-iterative
manner because it is a part of the solution of the main equation.
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RESEARCH ON INVERSE METHODS AND OPTIMIZATION IN
ITALY

Francesco Larocca
FIAT AVIO, Corso Ferrucci 112, 10129, Turin Italy

1 Introduction

The paper deals with the research activities in Italy on inverse design and optimization. The review is focused
on aerodynamic aspects in turbonachinery and wing sections design.

Inverse design of blade rows and ducts of turbomachinery in subsonic and transonic regime are illustrated
here by the contributions of "Politecnico di Torino" and turbomachinery industry (FIAT AVIO).
As far as turbomachinery design is concerned, the development of an optimization technique is shown by the
contributions of the "Universita' di Genova".

Contributions from the " Universita' di Bari " illustrate recent progress in aerfoils design in the field of
subsonic flow.

2 Turbomachinery Components

2.1 Design of cascade and ducts in transonic flow

A methodology to solve inverse design problems for channels and blade rows, assuming the flow to be multidi-
mensional and the fluid inviscid, compressible and ideal, is described in [1]. The methodology is based on the
procedures described in [2] for the solution of inverse problems in 2D channels, in [3] for 2D inverse cascade
problems, in [5) for 3D inverse blade rows problems. An updated version of the methodology is described in
[6) for both 2D and 3D inverse problems in channels and blade rows.
The basic idea is described in [2]. Briefly, a time-dependent computation is performed in a duct, where a
distribution of pressure is prescribed on a wall, the geometry of which is unknown and has to be determined.
Such a wall is a boundary of the flow field and it is assumed as a flexible and impermeable surface. Some
initial configuration is guessed for the shape of the wall and for the internal flowfield. During the following
transient the flexible wall move in a wavy fashion and, at the end, it will assume the steady shape required
by the prescribed pressure on it and in agreement with the steady internal flow.
A coordinate transformation is used in order to map the physical region, whose shape dep-sds on time, into
a computational domain, whose shape is independent of time. The Buler equations are integrated in time by
a finite difference method on the time-dependent, body fitted, grid defined by the mapping.
In order to show the way the solution is gained in time, we report here one of the examples of [2]. The Ringleb
flow [8] was taken as benchmark case. A set of streamlines 4, = const of the Ringleb flow are plotted in fig. 1.
Once two streamlines are selected, they may be regarded as the solid walls of a channel, and, from the point of
view of an inverse problem, the theoretical pressure acting on these may be taken as the design input datum.
The chosen channel is in the transonic region, and is confined by the streamlines 4, = 0.8, 4, = 1.0 and by the
radial coordinate lines 0 = 400, 0 = 900.
Fig. 2 shows the shapes of the walls during the transient (solid lines), from the initial guessed configuration
(K = 0) to the final one (K = 500). The dots denote the theoretical location of the streamlines. The
maximum relative error of the location of the wall points is less than 0.6%, while the maximum relative error
of the computed Mach number in the whole flow field is less than 0.4%
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Since [2] was published, several improvements have been done. Upwind numerical schemes have been adopted
to attain consistency with the wave propagation phenomena described by the Euler equations, as a consequence
the computation at the boundaries has been improved; the extension to 3D problems has been shown feasible;
different formulations have been attempted. The path of the evolution runs from [2] to (61.

2.1.1 The cascade problem

For a 2D cascade of airfoils, the inverse problem consists of finding the geometry of a cascade producing a
flow of which some parameters are prescribed. There is a certain freedom in the formulation of the problem.
We confine the discussion in the present report to problem for the 2D and 3D cases, where, in addition to
suitable condition at infinity one may prescribe the distribution of thickness and load along the chord of a
profile, and inquire for the geometry of the camber line.
In [2] - [6], the problems are solved by using the technique briefly outlined in the previous section: a time-
dependent computation is performed, in which the boundary conditions are imposed according to the formu-
lation of the inverse problem, until a steady state is reached asymptotically. The contours of the blades are
considered as impermeable but perfectly deformable. An initial geometry is assumed. Since such a geometry is
incompatible with a steady motion, consistent with the prescribed conditions, a transient is generated. During
the transient, the walls of the blades change in shape, in order to satisfy the condition of impenetrability. The
solution of the inverse problem is given by a geometry obtained asymptotically.
The reader may refer to Ref.[3] and Ref.[7] for the discussion of the 2D different problem formulations.

We proceed now to describe the process, in particular the boundary conditions, that have been chosen to
generate the solution, confining ourself to the physical viewpoint.
Figs. 3a) and 3b) show typical initial and final configurations. The flow is assumed to be confined between
two consecutive blades, the arcs BC, and two parallel lines issuing from the leading edge and the trealing edge
of the blades. The lines in front of the blades are denoted by AB. The lines behind the blades are denoted
by CD. Such boundaries are assumed to be impermeable and perfectly deformable: therefore, we can think in

terms of a flow within a channel, the geometry of which may change in time, although its width (measured
parallel to the y-axis) is independent of time. The channel is confined by the permeable boundaries AA and
DD, upstream and downstream, respectively. The inlet boundary AA is considered fixed in time, whereas
the exit boundary DD can slide upwards and downwards, maintaining a constant pitch. A time-dependent
computational grid, which fits the boundaries, is defined inside the channel.
The design data are prescribed, according to problem formulation, by giving the distribution of thickness r(x)
and pressure jump between the two sides of the blades, Ap(z). Since the flow is periodic, the upper and lower
boundaries of figs. 3 can be reduced to a single boundary for'a single blade, as in fig. 4. Note that the upper
part of the ABCD line in figs.3 is the lower boundary in fig.4, and viceversa.
The arcs, AB and CD are deformable and impermeable interfaces, across which the pressure is continuous but
the tangential velocity component may be discontinuous. In formulating the boundary conditions, the whole
ABCD arc can be treated homogeneously. The interfaces can be considered as surfaces of blades for which a
vanishing thickness and a vanishing pressure jump are prescribed. With this convention in mind, we procede
to describe the technique for any blade surface.
In fig. 5 we show two grid points on two different sides of the blade, at the same abscissa. The velocity vector
is decomposed along the tangent and the normal to the blade at each point. Since the blade is impermeable,
the two flow velocities and the blade velocity must have the same normal component. Moreover, by imposing
the pressure jump Ap(x) to be constant in time, the boundary conditions that allow the geometry and the
the flow to be updated at each computational step, are obtained.
At the inlet boundary AA (figs.3) we prescribe the total pressure, the total temperature and the flow angle,
if the flow is subsonic, whereas all the flow quantities are prescribed if the flow is axially supersonic.
At the exit boundary DD no boundary conditions are needed if the flow is axially supersonic, while in the
case of subsonic flow, the kind of boundary conditions to be enforced has to be selected carefully, in fact, as
it is discussed in [1] and [3], the inverse problem has not an uniquely defined solution. The kind of boundary
conditions tba' is used selects one solution among the possible ones.

The numerical process used approximates the governing equations written in quasi-linear form, as a conse-
uence it is not conservative and weak solutions are not captured spontaneusly, but they need some special]
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rtreaitment. This shortcoming is the prici to be paid-forthemain advantage that our numerical process of-
fers: the capability of computing the boundaries in a -way consistent with domain of dependence due to the
hyperbolic nature of the governing equations, avoiding the need-for spurious additional numerical boundary
conditions. This point is crucial for the success of method,in fact the computation in a domain whose physical
shape depends on the solution is very sensitive to the way the boundary condition are enforced and any
mistreatment may produce catastrophic instabilities.
Moreover, the inverse problems that generally one asks to be solved are shockless and the need for shock-
capturing capability is rare; if this capability is requested, the scheme can be easily converted in a conservative
Flux Vector Splitting scheme, as described in [12].

In the early formulation [3]-[5), a numerical procedure to solve inverse problems has been developed according
to the lambda-scheme [9] and [10]. Briefly, the wave system affecting a given point in an unsteady flow
field is described by four orthogonal waves. The A-scheme uses one-sided differences to approximate the
compatibility equations relative to the four waves, according to their direction of propagation and, as a
consequence, satisfying the domain of dependence. The computations of a transonic shockless compression
comes quite accurate and, besides that, the computation at the boundaries is simple and naturally suited
for this kind of numerical scheme based on compatibility equations, avoiding almost completely the need for
numerical additional boundary conditions.

Two numerical examples are here presented according to the selected formulation and prescribing the static
pressure pc as exit boundary condition. Further examples are shown in Ref. (3].
Fig. 6 shows the initial configuration and fig. 7 the steady solution to the inverse problem for the case
corresponding to

r = .025 [1 - cos(27rz)] Ap = c [1 - cos(27rx)] (0 < X < 1)

The ratio pc/p0 between downstream pressure and total pressure is 0.8, the upstream flow angle ar is 20',
and the upstream nondimensional total temperature e' is 1, while c = .1. Both this case and the following
one have been computed using 40 intervals in x and 10 in y.
A check on the accuracy of the computation is shown in fig. 8, where the theoretical behavior of the y-
momentum is compared with the numerical result. The maximum error is less then 1%.
The case of fig. 9 has the same r, ai, and E0 as in the preceding case, but c = 0.15 and p,/p ° = 0.71.
The resulting cascade is supercritical but unchoked and shockless. It can be seen from the isoMach lines of
fig. 9 that a supersonic bubble appears on the upper side of the blade, but the lower side is entirely subsonic.
The pressure cannot be discontinuous on the subsonic side; therefore, it must be continuous on the supersonic
side as well, since Ap is prescribed as a continuous function of z.

A further example is presented in fig. 10. It refers to the axial cascade with supersonic inlet Mach number,
but having subsonic axial component. In this case the regime of unique incidence is established and it requires
a boundary condition at inlet wich does not violate the simple wave region upstream of the cascade. This is
obtained by imposing, at the inlet boundary, besides the total pressure and total temperature, the compatibilty
relationship between Mach number and flow direction along a Mach line for steady supersonic flow. In fig. 10
the isomach contours are presented; the inlet Mach number is equal to 1.19, while th exit flow is subsonic and
the cascade is shockless. In fig. 11, as a check, in the odograph plane the upstream flow field is presented.
The simple wave region is well described, as it can be seen by the points belonging to a unique epicycloid.

In Ref. [4] a different formulation of the 2-D inverse problem is attempted: instead of looking for the shape
of the walls, which in turn define the grid, it is looked for a whole orthogonal grid which adapts itself to the
solution of the inverse problem. the Euler equations are written by assuming a set of indipendent variable
that, at the steady state, coincide with the stream function an, with a curvilinear co-ordinate along the lines
orthogonal to the streamlines. The Euler equation so written are integrated in time according to the A-scheme,
the numerical process turns out very simple and quite accurate. The main drawback of method presented in
[4], is that such method has not a straighforward extension to 3-D problems.

LThe success of a computational method aiming to solve multidimensional problems governed by the time-
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the boundaries. The A-formulation shows good qualities in both respects, it does not violate the domains
of dependence and it allows the boundaries to be treated in a way consistent with the wave phenomena
approximated in the inner flow field. Nevertheless, the upwind schemes to approximate multidiner.,,ional
wave phenomena have a sort of weakness being necessarily based on the approximation of waves propagating
along a finite number of directions, while the possible directions along which actual waves propagate are
infinite. The problem is addressed in Ref. [10], and, more recently, in Ref. [11]

Following Ref. [11], the 3D time-dependent Euler equations written in tensor notations, can be rearranged in a
form suitable for upwind discretization by decomposing the 3D unsteady motion as due to waves fronts parallel
to the coordinate surfaces; the resulting set of equations prompts an upwind discretization that preserves the
3D nature of the actual flow and tIat it particularly convenient from the point of view of the treatment of
the boundaries.
The resulting scheme is very close to the A-scheme, coinciding with it for orthogonal grids; moreover, the
boundaries can be treated avoiding completely the need for local frames of references and additional boundary
conditions, even in the case of non orthogonal grid. Details on this matter can be found in [11].

2.1.2 Examples

Here three numerical results are presented: the first one refers to the design of a 3D rotational, transonic,
convergent-divergent nozzle, while the other two refer to the design of turbomachinery bladings. In order to
test the capabilities of the present inverse technique, in Ref. [1] the authors choose an example with a distorted
geometry, quite far from the guessed initial one. Fig. 12a) shows the 3D view of the initial configuration
and Fig.12b) the final one that solves the inverse problem. The solid walls are planes. The design pressure
distribution on the lower moveable wall is

pd = .8 - .7x3

on the upper wall:
p, = .8 - .35(l - cos( 3))

On the inlet boundary the total temperature is kept uniform and constant in time ( 0 = 1, the flow velocity
has the direction of the x 3 coordinate lines and the total pressure obeys the law:

pO = 1 - Ap°(yt - o)/(y- b ); A.P° = .1

The resulting flow is rotational and non homoentropic.
Figg.13a), 13b) show the isoMach lines over the left and right solid walls, Figg. 14a), 14b) over the upper and
the lower moveable walls and Figg. 15a), 15b) over the inlet and exit surfaces, respectively. Figg. 16a), 16b)
show the constant-entropy lines on the inlet and exit surfaces, respectively.
The second example refers to the design of the blades of a stator. Figg. 17a), 17b), show the initial and final
3D view, respectively. The tip and hub solid annulus walls are cylindrical with rt/rh = 1.5.
The design thickness and the design loading are, respectively:

r = .07 sin [r ' l Ap = .08 sin

with y' - y? =axial chord.
At the inlet boundary the flow is axial. The total temperature is kept constant 00 = 1, while the tototal
pressure is distorted: p° = gV' + h
with g = .1/(vr- V/-,), h = 1.- gvf.
At the exit surface, a distribution of pressure, in agreement with an approximate solution based on the radial
equilibrium theory, is given as boundary condition, with Ph = .7 at hub radius.
Figg. 18a), 18b) show the isoMach l-nes on the blade to blade surfaces at the hub and tip radii, Figg. 19a),
19b) on the pressure and suction sides of the blades, respectively. Figg. 20a) and 20b) show the constant

Lentropy lines at the inlet and exit surfaces.
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The constant entropy surfaces coincide with stream-surfaces; as it has-been pointed-out in Ref. (5], looking]
at Figg. 20a) and 20b) one would expect to see the typical rotation of such surfaces as consequence of the
secondary flows generated in 3D rotational flow. Actually, a streamwise component of the vorticity is correctly
generated, it does not reveal itself as a rotation of the streamtubes, but rather as a peculiar twisting of the
blades: the loading is prescribed as design datum and it cannot be decreased as a consequence of secondary
flows, but the lower is the total pressure (and density) the higher the deflection to provide such loading.
Finally, two integral checks have been done on the continuity and angular momentum of the computed
flow field: Fig. 21 shows the mass flow computed on cross sections along the blade to blade channel; Fig.
22 compares the angular momentum evaluated on cross sections along the channel with the corrisponding
theoretical torque due to the design loading.
In the third example the annulus walls form a conical surface at hub radius, and a cylindrical surface at tip
radius. The flow at entry is assumed to have axial direction, with constant total temperature and a parabolic
distribution of total pressure, the smallest being at hub radius. A certain distribution of thickness and pressure
jump as functions of the radial and axial coordinates are assumed, r = g(yl, y3), Ap = f(y', y'). At the exit
surface, a distribution of pressure, in agreement with an approximate solution based on the radial equilibrium
theory, is given as boundary condition, as well as in the previous example.
The initial configuration of the blade row is shown in fig. 23a). The blades are without camber and twist.
Fig. 23b) shows the final configuration of the blade row. Figg. 24 and 25 represent the isoMach lines of the
initial and final configuration of blade to blade section at hub radius, respectively. Figg. 26-28 represent the
final configurations of the intermediate and tip blade to blade sections. The threedimensional nature of the
flow field and the twisting of blades is shown in these results.
The flow is transonic, in fact a supersonic bubble extends from hub to tip on the section side. Figg. 29 and
30 show the isoMach lines on the projection on the meridional plane of the suction and pressure sides of Lhe
blades, respectively. Finally, figg. 31a) and 31b) show constant entropy lines on the sections normal to the
axis, corresponding to the trailing edges and the exit of the streamtube.
The constant entropy surfaces coincide with stream-surfaces. Figg. 31a) and 31b) show the absence of the
typical rotation of such surfaces and the peculiar twisting of the blade to blade channel, as well as in the
previous example.

2.2 Design optimization of axial compressor

The aerothermodynamic design of turbomachines requires a number of indipendent parameters which results
in a multiplicity of possible design configurations. 0

In order to have an optimized design of turbomachinery components, the choice of many design parameters
requires an optimization problem to be solved in an early stage in the design cycle. The objective function in
a general optimization problem represents a basis for the choice between various equally acceptable designs.

A computational procedure for design and optimization of axial turbomachines has been presented in [15].
The geometrical and fluid dynamic optimized quantities are obtained by coupling non linear minimization
algorithms with methods for flow analysis and design. In the early formulation (16), the optimized design
methodology uses the fluid dynamic analysis at mean diameter for axial turbine/compressors stages.
The optimization procedure presented in (15] and [16], is based on a constrained non linear minimization
problem and is obtained by using three different methods: Monte Carlo, Simplez and Gradient. The numerical
optimization strategies used in [16], based on a combination of the previous methods, has shown that the best
results are obtained in general by enforcing the three methods sequentially.

In the work presented in [17], the authors used objective functions that are composed not only of a single
variable, but of a combination of variables. This is done in order to avoid the improvement of a single quantity
(e.g. efficiency), to the detriment of other important compressor characteristics. Moreover, multivariable
objective function is used so that the optimum design of an aeronpace or industrial compressor can be found
using the same numerical procedure and ascribing suitable importance to the efficiency (7'T7), stall margin
(identified by a coefficient Ch) and weight of the machine (identified by a specif area A,;), whose linear
combination represents an appropriate objective function.

L For the design of an axial flow compressor stage, the following parameters are taken as the design variables:
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X 1 =-stage enthalpy- drop (4') -
X -inlet flow coefficient (4)
X3= stator outlet absolute flow angle (C(3)-
X4 mean diameter of the stage (D.n)
X= rotor axial velocity ratio (AVRR)
XG = stator axial velocity ratio (AVRs)
X7 = stator solidity (Os)
Xs = rotor solidity (Ur/)
X9 = rotor blade chord to mean diametei ratio (QR/D,,)
X10 = stator blade chord to mean diameter'ratio (Cs/D,,)
X11 = stator max thickness to chordratio (t,1 /C)s
X12 = rotor max thickness to chord ratio (,, 1/C)R

The design process is shown in fig. 32. For given design specifications, the design parameters, defined at
mean diameter, are guessed at the beginning of the computation and they define a first rough design wich is
modified during the analysis design procedure in order to minimize the objective function. The evaluation
of the efficiency is performed by using performance analysis of the stage defined by the actual values of the
indipendent variables, while the stall margin is computed by using some simple correlation [19] suited for
preliminary design studies.

The constraints of the optimization design method could be of two kinds. That is, rectangular constraints
wich are directly applied bn the design variables and they come from the field of the possible applicability
of the correlations used in the objective function evaluation. However, a diret constraining of any single
design variable does not ensure that, in a particular combination of them, some of the mechanical or fluid
dynamic variables could exceed the usual limits. For these reasons, non-rectangular constraints have been
chosen: they are related to the aerodynamic loading, flow instabilities, limiting flow rate through a flow path
element, aeroelastic aspect of compressor blade rows, and noise generation. In order to take into account
these non-rectangular constraints of the problem it is necessary to introduce in the optimization procedure
the penalty function technique. The optimization problem is stated as a non linear programming problem as
follows: find X that minimizes

f(X) = Gq (1 - riTT) + GA (1 - As,p) + Gc(1 - Ch) (1)

subject to the consfraints

X! < X, < XU i = 1,m g1(X) j=l,n (2)

where G,1, GA and Gc are coefficients.Details of the method are given in Ref. [18].

In the following examples, the complete optimization method was first used with a single objective function
coincident with r1TT and then with a multivariable function (''T, Ch, A,p).
From [17], the design of a stage of a small axial compressor (4 kg/s) with a high pressure ratio (OTT = 1.65)
is presented. The design variables are shown in Tab. 1, while Tab. 2 presents the numerical values of the
constraints. The optimization has been performed with a single variable objective funcion, the total-to-total
stage efficiency.
The initial stage efficiency value of 0.875 grows up to 0.927, with the absolute exit flow angle a3 < 20'.
The optimized results shown in Tab 1 have been obtained by imposing different limits to the stage (oa3).
As shown, the design variables, 4), 4, AVR and a seem to be particularly sensitive to the at3 limits. The
optimization procedure has carried out a reduction of the relative Mach number (to which shock losses are
related) allowing for a remarkable reduction in the rotor losses t,0Ri = 0.114 and WRo = 0.0675).
Additional calculations have been performed by modifying the inlet flow algle (or), simulating in this way
the presence of an IGV or of a stage upstream. As an example, Tab. 3 shows the results obtained for
al1 = 0; 10; 20'.
In the previous examples it can be seen that, whereas 77TT increases, the other significant design variables

Ch,A.,V) are drammatically reduced. This points out the necessety to operate with mixed objective function. J
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A design optimization has been performed using a multivariable objective function with different values of 1
the coefficients GIGA and GC, ranging from 0.0 to 1.0.
Table 4 shows the initial values of 77TT, Ch and A,p, and the final ones after the optimization process. From
Tab. 4 it is evident that if Gi = 0, the values of 77TT are absolutely unsatisfactory, especially in the case where
GA and Gc are unity. For this reason, the efficiency should always be present in the objective function. In
the case where G,, = 1 and Gc = 0, a high reduction results in the stall margin (especially if GA = 1).
If G,1 = GA = G = 1, the dominant effect of GA leads to a large increase in the specific area and also a
corresponding decrease in the starting value of efficiency (from 0.87 to 0.78).
Finally, the analysis of the optimization with the iniativariable objective function has been performed varying
GA from 0 to 1, with GC as parameter and G,1 = 1. The optimum efficiency, plotted in fig. 33, decreases
greatly with GA. The same trend, even if reduced in effects, is shown by Gc. Fig. 34 shows the stall margin
coefficient; the influence of GA is negligible for high values of Gc, while if GC = 0 the increase in GA is
positive for the stall margin.

The one dimensional design procedure at mean diameter is simple and is justified by the need for an immediate
definition of the global geometry of the machine and by the possibility of a preliminary design choice, but it
does not provides any informations about the hub-to-tip geometry.
The one-D procedure has then been extended in [15],[18], by coupling the numerical optimization strategies
with 2-D flow computation in the meridional plane (through-flow analysis) in order to have an optimized
radial distribution of geometrical and aerodynamic quantities. This makes possible to optimize the radial
distribution of the main geometrical and fluid dynamic parameters of the stage. Nevertheless, the method
solves non linear equations by an iterative techique and therefore their introduction in the optimization
procedure could be quite expensive as far as the computational time is considered due, also, to the high
number of iterations required by the minimization.

Some difficulties is rappresented by the choice of the design variables. In a previous work (20], the authors
chose to deal with three radial sections - root,mean and tip - for a total of ten design variables for each single
row, considering fixed the geometry of the meridional section. The results obtained demonstrates the need
for a better definition of the design variables and, therefore of the row geometry. In ref. [18], the coefficients
of suitable polynomial that represents the 3-dimensional geometry of the row to be optimized were chosen as
design variables.
The design variables -13 for each row- are all geometric, as opposed to the procedure presented in the pre-
lininary design. This is due to the assumption that the optimizatioat criteria will be applied to a machine of
wh ' ich the kno.... , *VA1f n My in a preliminary w ,-

The evaluation of the objective function ip, obtained with a through-flow calculation by using a matrix method
[21]. The code, furthermore, permits the calculation of the annulus wall boundary layer with an integral type
solution [22] and the computation of the secondary deviation angle [23].

The general scheme is illustrated in fig. 35. Starting from initial data (Po,To,z'T,,m) and from the mean
diameter design variables (Xi), and working with a multivariable objective function, the mean diameter
optimum geometry is obtained. From here, by considering a law of radial geometry distribution (e. g. the
free vortex), the values of the the initial data of the through-flow calculation (DA,Dt,n) and the new design
variables (polynomial coefficients a,) are obtained. Using the same algorithm of constrained minimization as
in the previous case, the procedure continues until the objective is reached.
The optimization problem uses only one objective function coincident with the stage efficiency.

The procedure has been applied to solve two kinds of problems. In the first one the process is used to redesign
an existing isolated transonic rotor. The one described in [24] is selected to verify the optimization process.
The initial geometrical data of the rotor, which coincide with the polinomial functions to be optimized, are
shown in figg. 36,37 and 38, respectively. The root chord is equal to 0.0388 in and is constant along the
blade span. The calculation is carried out for the design conditions: m = 96.18kg/s and n = 8870rpm. The
initial efficiency (original geometry) is equal to 0.897, while the value obtained at the ei,d of the optimization
process is 0.943, greater than a 4 percent increase. Fig. 39 illustraes the objective function history during the
optimization. In figg. 36, 37 and 38 in addition to the initial radial distributions, the optimized values are

L J
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Valso given; it is possible to note how the angle ,1b has undergone slight variation, with the maximum variation'
at the root (40). The angle /2b shows the maximum shift with respect to the initial value at meadspan of the
blade (60). This involves an increase of the blade curvature in the central zone with slight reduction in the
root and tip regions. The solidity is reduced along nearly all the span, while at tip it change from 1.30 to 1.41.
The maximum thickness/chord ratio has, at the end of the optimization, a more uniform radial distribution.
The optimization operates in the sense of a reduction of the diffusion factor in the R < 0.4 region (fig. 40),
while in the upper zone Df increases. For R < 0.6, the loss reduction is significant as shown in fig. 41; in
the tip region, where a great deal of the losses is due to the shock, although a reduction occurs (from 0.062
to 0.049), it appears to be more contained.

The second example is relative to the use of both procedures (pitchine and throughflow) in order to design
a stage working from the following informations: mass flow rate= 4kg/s; pressure ratio /T = 1.60; Pol =
101.3kPa; To, = 300K. The initial optimization procedure is carried out with an objective function having
the following weights: G,1 = 1, GC = 0.0, GA = 0.0, and with a higher constraint for a3 of 100.
The meridional section optimized with such a procedure is illustrated in fig. 42. The rotational speed is
39,500 rpm; optimized efficiency is equal to 0.91, the stall margin is Ch = 0.50 and the specific inlet area is
AJ, = 170.
The radial distribution of geometrical characteristics of the blade, from which the new design variables a are
obtained, was aquired by considering the free vortex law for the rotor and inlet section of the stator. For the
stator outlet section, the angle a3b was chosen in a different way (fig. 43). Optimization results are shown
and compared with starting values in the above mentioned figures.
As far as efficiency is concerned, it must be pointed out that the value calculated with pitchline analysis differs
from the initial finding obtained with the through-flow calculations. This latter, however, changes with the
second optimization process from 0.844 to 0.905, showing at the same time a sufficiently rapid increase.

Th'e previous examples have shown that the optimization technique allows a design of turbomachinery compo-
nents with high degree of efficiency not only in one-dimensional approach, but also in an integrated analysis
in the meridional plane where an optimal radial distribution is obtained for geometrical and aerodynamic
quantities.
The same procedure has been applied by the authors to solve optimization problems for multistage axial flow
turbines ([25]).

3 Inverse wing section design

From a fluid dynamic point of view the design of an airfoils looks for a geometry wich satisfy the equation
of motion, given some boundary conditions. Two kinds of methodology can be used: the first one imposes
some parameters (such as pressure, Mach number distribution, etc...) on the surfaces, while the second one
prescribes some global properties to the flow field, such as minimum drag, shock-free, minimum entropy
generation, etc.,. Both of them require some constraints in order to obtain a final airfoil shape with physical
meaning.
As far as a design technique of the first type is conceived, and in the light of the well-posedness of the problem,
the distribution of the flow parametes must satisfy some constraints in order to have the solution of the inverse
problem for incompressible flow.
A methodology for solving inverse problem for airfoils by prescribing a pressure or velocity distribution is
presented in ref. [26]. The inverse technique there presented is based on conformal mapping (ref. (27], [28])
for inviscid incompressible flow and it has been extended to the compressible subsonic flow case by applying
the Karman-Tsien transformation. The assumption of inviscid flow is sufficiently approximated unless low
Reynolds numbers are considered, when the boundary layer thickness can change significantly the resulting
geometry. In this case the model is still valid, but the new surface is obtained by the displacement thickness
given by the imposed pressure distribution.
The method outlined in ref. (26], consists in mapping the phisical domain z(x, y), external to the closed line,
tn a seminfinity strip on the computational domain ((, 17) with q > 0 and -7r/4 < < 7r/4 (fig. 44).
rhe airfoils is approximated by rectilinear elements, and the mapping function, valid for poligonal contours

L j
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(ref. [26]), can be written in general form: ]
Oz_O- f(M, C, a,,, at, g,,, I n= 1, N (3)

where M is a scale factor, alit represents the abscissa in the computaional domain of the nodal points of the
elements, g,,, are function of ( and the position of the rth element on the computational domain, and, finally,
C,,, depend on the change of the tangent to the airfoil along the element mth as function of a,,,. The C,,
values, which are known in a direct analysis because the geometry is given, in the inverse design they rapresent
the unknowns of the problem.
In order to evaluate the C,,,, the complex potential is imposed on the central point of the N-2 elements, where
the modulus of the velocity is known. The resulting system with C,,,(m = 1, N + 1) unknowns is closed by
giving the velocity and incidence at infinity, by imposing the Kutta condition, two geometrical constraints at
the trailing edge in order to have a closed profile, and, finally, by imposing the tangent at leading edge to be
perpendicular to the chord. Moreover, if the compressible flow is considered, the Karman-Tsien relationship
is used to trasform the compressible distribution on a fictitious incompressible distributions.
Since the coefficient of system of equations are function of the position of nodal points in the computational
domain which are unknown, an iterative procedure is followed:
1. An initial guessed distribution of nodal points is assumed in the computational domain
2. The system equation is solved by Gauss-Siedel method
3. The equation 3 is integrated by assuming a value of M; the airfoil is obtained in the phisycal plane and
then M is scaled in order to have a computed chord equal to the prescribed one
4. If the position of the nodal points does not coincide with the previous values, the abscissa of these points
are updated
5. The iterative process restarts from point 2 by using the new values of C,,,

The method has been applied to the design of airfoils for wich the incompressible solution is known. Fig. 45
shows the incompressible velocity distribution associated to the symmetrical Karman-Treffez airfoil without
incidence, wich is prescribed to solve inverse problem.
The resulting airfoil is shown in fig. 46. Here different solutions, obtained with 16 (triangles), 32 (circles) and
64 (plus) elements, are compared with the exact one. For the 64 elements, tab. 5 shows the abscissa of nodal
points, the exact values YP and the computed YN coordinate, and the error with respect to the maximum
thickness.
A further example relative to the Karman-Treffez airfoil with camber and 5' incidence, with the prescibed
velocity distribution given in fig. 47, is shown in fig. 48.
The method, which seems to be very accurate in the incompressible case, has been extended to the design
problem by considering compressible subsonic flow. In this case also airfoils from catalogue have been selected
as test cases. For the NACA0012 airfoils with M,, = 0.72, acO = 00; and MO = 0.5, a,,,, = 30, by prescribing
the pressure coefficient reported in figs. 49 and 50, respectively, the results obtained by using 32 elements are
shown in figs. 51,52.
Also for the compressible case the method seems to be very accurate, even when the Mach number is very
close to one on the airfoils.

L. jJ Q
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ADJOINT OPERATOR APPROACH TO SHAPE DESIGN
FOR INTERNAL INCOMPRESSIBLE FLOWS

H. Cabuk, C.-H. Sung*, and V. Modi,

Department of Mechanical Engineering,
Columbia University,

New York, New York 10027

* David Taylor Research Center

Bethesda, Maryland 20084

The problem of determining the profile of a channel or duct (given its upstream cross-section and
length) that provides the maximum static pressure rise is solved. Incompressible, laminar flow governed
by the steady-state Navier-Stokes equations is assumed. Recent advances in computational resources and
algorithms have made it possible to solve the "direct" problem of determining such a flow through a body
of known geometry. It is possible to obtain a set of "adjoint" equations, the solution to which permits the
calculation of the direction and relative magnitude of change in the diffuser profile that leads to a higher
pressure rise. The solution to the adjoint problem can be shown to represent an artificially constructed flow.
This interpretation provides a means to construct numerical solutions to the adjoint equations that do not
compromise the fully viscous nature of the problem. This paper addresses the algorithmic and computational
aspects of solving the adjoint equations. The form of these set of equations is similar but not identical to
the Navier-Stokes equations. In particular some issues related to boundary conditions and stability are
discussed. The use of numerical solvers is validated by solving the problem of optimum design of a plane
diffuser. The direct as well as the adjoint set of partial differential equations are discretized using a finite-
volume formulation. Each of the resulting set of algebraic equations are then solved numerically to obtain
a change in profile that will ensure an increase in the static pressure rise. Upon successive applications
of this procedure, an "optimum" profile is obtained beginning with an initial guess of a diffuser profile.
Such optimum diffuser profiles are obtained at Reynolds numbers varying from 10 to 2000. The optimality
condition, that the shear stress all along the wall must vanish for the optimum diffuser, is also recovered
from the analysis. It is shown that numerical solutions obtained in this fashion do satisfy the optimality
condition.

1. INTRODUCTION

A shape optimization problem is one in which an objective function defined on a domain and/or on its
boundary through the solution of a boundary value problem, is minimized (or maximized) with respect to
the variation of the domain. One problem of this nature is "What is the shape of a body (of given volume)
which has minimum drag when moved at constant speed in a viscous fluid?'. Pironneau (1973) addressed
this problem in Stokes flow for a three-dimensional unit-volume body. It was shown that at optimality the
normal derivative of the velocity is constant along the boundary of the body. In addition it was also shown
that the general shape of the body is similar to a prolate spheroid including a conical front end and rear ends
of angle 120 degrees. However, due to the lack of a numerical Stokes flow solver, a complete body profile
could not be obtained.

In a subsequent study, Pironneau (1974) derived the change in energy dissipation due to a small hump
on a body in uniform, steady, laminar flow. Using the above result in conjunction with variational methods
of optimal control "necessary optimality conditions" for four minimum-drag problems were obtained. These
conditions lead to a set of equations for an additional set of variables called the "co-state or the "adjoint"
variables as opposed to the "direct" variables which are the unknown velocities. At the time Pironneau (1974)
was unable to carry out such a numerical integration. Instead, however using a boundary layer assumption
he was able to prove that a two-dimensional unit-area body with the smallest drag has a wedge-shaped
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front end. In a subsequent work Glowinski and Pironneau (1975) presented numerical computations of the
minimum-drag profile of a two-dimensional body in laminar flow, although with a Reynolds number large
enough (between 1,000 to 100,000) to permit a boundary layer approximation. The present study belongs
to this class in its theoretical approach with particular emphasis on computation of optimum profiles in the
absence of simplifying assumptions such as Stokes flow or thin boundary layers.

Another related class of optimum design problems is the question of determining the profile of a two-
dimensional body that will attain a desired surface pressure distribution. The body is assumed to be in
otherwise uniform flow. The designer usually has a better understanding of how the performance is related
to the the pressure distribution than the relationship between the profile and the performance. In recent
survey paper, Jameson (1988) suggests that the design problem be treated as a control problem in which
the control is the profile of the boundary. He also provides a comprehensive summary of the earlier related
studies in this direction. In a significant step towards addressing real flows Giles et. al. (1985) addressed
the problem of shape design for flows governed by the two-dimensional Euler equations. They write the
two-dimensional Eider equations in a streamline coordinate system and for fixed pressure distribution obtain
a Newton solution for the unknown surface coordinates.

In the present study optimum design of an internal flow component such as a diffuser in laminar flow
is considered. The problem of determining the profile of a plane diffuser (of say, given upstream width and
length) that provides the maximum static pressure rise is formulated using a variational method derived
from optimal control theory. Careful consideration of the numerical stability of the adjoint equations we
have been able to demonstrate the feasibility of optimum design in the context of laminar Navier-Stokes
equations without the additional boundary layer assumption.

2. STATEMENT OF THE PROBLEM
Consider a plane diffuser as shown in figure 1 of given upstream width W1 and given length L with

incompressible, laminar flow through it. The flow is governed by the incompressible, steady forms of the
Navier-Stokes and continuity equations. These are:

U,,, = 0 (1)
uiuij = -PI + uVijj

where p* = p/p. Here u,, p, p, and L are the velocity components, pressure, density and kinematic viscosity
respectively.

A no slip condition is imposed on the bounding wall. Dirichlet type boundary conditions are assumed
at the entrance and exit, specifically, it is assumed that the streamwise velocity component at the entrance
and exit is specified and the transverse velocity component at the entrance and exit is assumed to be zero.
Symmetry conditions are assumed at the centerline. All velocities and lengths are scaled using the average
entrance velocity, V, and the diffuser entrance width W, throaghout the paper. Hence the Reynolds number
for the flow through the diffuser is defined as Re = (V . W1) Iv.

It is desired that the optimum diffuser profile be such as to maximize the value of this parameter for a
given upstream width and length. Since pressure may vary across the diffuser inlet and exit regions it was
decided to choose the change in the flow weighted integral (over the exit and inlet cross-sectional areas) of
the static pressure rise as the objective function. This quantity is given by:

J(rM) = fr p*uinids + Jr0 puinids (2)

where n, is the it h component of the unit normal vector and Fm is the portion of the diffuser wall that is
to be shaped. The goal then is to determine the diffuser profile that maximizes the above function. The
normalized diffuser length, L/W,, (henceforth simply called the length) is kept constant. The normalized
exit width W2 /WI, (henceforth simply called the exit width) is left arbitrary, and its actual value for the
optimum diffuser is part of the solution to the problem and is determined along with the rest of the profile.
Since the only mechanism for total pressure drop in the diffuser is viscous dissipation, the optimum profile
is also the profile for which the viscous dissipation is a minimum.
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s. MATHEMATICAL FORMULATION
In this section, the variation of the objective function with respect to the variation of the boundary is

obtained by means of a perturbation type of analysis. This analysis follows from arguments not unlike those
used for optimum design in potential flow, in an earlier paper by (abuk and Modi (1990).

First the variation of the solution of the direct problem due to boundary variation is obtained. Let p(s)
be an arbitrary function of arclength s, defined on rM, and let e be a positive number. Here rM is part of
the boundary that is to be shaped. The whole boundary, including the wall of the diffuser, the centerline
and the inlet and exit areas, is denoted by r and the domain enclosed by r is denoted by fl. Let each point
on rM be moved by ep(s) along the outer normal direction. The curve constructed in this way is denoted
by rM,€ and the new domain is denoted by fl, as shown in figure 1. Let (us,pl) be the solution of (1) in the
new domain fl,. Let (0i, 7r) be defined as follows.

C-0 (3)r = lim e- [' - efO.

Then (ul, p ) can be written as:
uf = ui + c€ (4)

p' = p* + cir

Since both (u,, p') and (u,, p*) satisfy the Navier-Stokes equations, it can be shown that (qi, 7r) satisfy the

following set of equations:
k i = 0(5

uioij + ,yuj = -7ra + V (5)

In a similar way it can be shown that on the fixed portions of the boundary

qi,=0 on(r-rM) (6)

since both uf and ui satisfy the same boundary conditions.
The next step is to derive the conditions satisfied by Oi on rm. Consider a point P on rM, and a

corresponding point P, on rM,( such that P, lies on the outward normal i, as shown in figure 1. Assume
that cp(s) is positive. A Taylor's series expansion of uf about the point P, evaluated at I = 21p,, along the
normal direction 6 is . ausf + o(C2)

+0(2

= u ,JP + e'iJp + cp ( L u ±) + 0 (w )(7

Since the velocities satisfy the no slip condition on FM, (i.e. uf1p, = Uilp = 0);

i'=-P an on rM. (8)

The first variation of the objective function is obtained next. The value of the objective function for the
new domain is given by,

J(rM,.) = f p'tnids + 'njds(9)

The first variation of the objective function, 6J, is defined by the relation

J(rM.) - J(rm) = 6j + 0(C2). (10)

The first variation of the objective function can be shown to be:

J fr 7ruinids+J 7ruinids , (11)
r Ior
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which-is an integral expression over the entrance and exit boundaries. The next step is the-transformation
of this integral from one.that is over r1 andTro to one-that is over rm. This is achieved through the
introduction of an adjoint variable -problem. The innerproduct of the perturbation equations (5) and the
adjoint variables, (z,, r), integrated over the domain, and added to (11), and after using the divergence
theorem gives

6J1fr (ui -zi) nids+v fZ i i )ds

+ f(r~ini - Oiziuini - uiziqSiny) da + ff irz,dA (12)

+ ff Oi (vzji + uiz, + uizy, - r,i) dA.

The adjoint problem has to be defined such that the domain integrals in (15) vanish identically. The choice
of boundary conditions for these equations is made such that the only nonzero terms are those that are
integrals over rM, the wall that is to be shaped. Let us define the following adjoint problem

zii = 0 in 0

vzi,jj + uj(zij + zy,i) - r,i = 0 in 0 (13)

zi = ui on r.

Using (6), (8), and (13), equation (12) can be written as

6J= V P(S) ( )( ) ds. (14)

In the above equation, the integration is over the boundary that is to be shaped. We can choose p(s) as:

since that would ensure a positive change in the objective function, J, for a sufficiently small non-negative
weighting function, w(s). The function p(s) provides the boundary movement for a positive change in J.
To evaluate p(s) we need to solve the direct problem (i.e. Navier-Stokes equations) given by (1) and the
adjoint problem in zi given by (13). Note that the optimality condition is satisfied when either the shear
stress, cui/an, or the adjoint shear stress, azi/an, on the walls vanishes. The former criterion for optimum
diffuser profiles was also pointed out by Chang(1976).

It will be shown that the above formulation is equivalent to the earlier work of Glowinski and Pironneau
(1975). By a change of variable, the adjoint problem can be transformed into the following form:

Wii = 0 in fl
vwii + uiwi,i + wiuii, - q,i = -uiuii in f) (16)

wi = 0 on I'.

where 2wi = (z, - ui) and 2q = (r - pO + (1/2)u! - 2uiwJ). The first variation of the objective function

then becomes

J p ( + - +2 ds . (17)

The form of the adjoint variable problem defined by (16) is identical to that derived by Glowinski and
Pironneau (1975). Either one of the above adjoint problems can be solved numerically to obtain the next
shape. However upon examination of (16), it becomes evident that the wiuy,, term may lead to a numerically
unstable scheme. This is because the approach to steady state would be attained via an iterative "time
evolution' like scheme that would then be of the form dw/dt = w(const) +.... This form is likely to result
in the exponential growth of the inevitable roundoff and truncation errors present at any iterative step. Also
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the presence of the inhomogeneous term, -uiu 1,., in the above equations may lead to a linear growth of the
roundoff and truncation errors in the numerical computations. It is expected that these numerical difficulties
will be absent in the (zi, r) formulation of the adjoint variable problem obtained in this paper and given by
(13). Hence this is the set of equations for which the algorithm for the numerical solution of the adjoint
problem is developed.

As pointed out by Pironneau (1974), the adjoint equations do not seem to arise from any identifiable
physical phenomenon. It is however possible to demonstrate that the adjoint variable problem is associated
with a certain artificially constructed flow. A change of variables leads to the following form.

Zij = 0 in 0l

z u - (2,- + -z' r'. = 0 infl (18)

= = -u onr.

where z = -zi, u = -ui, and r' = -r. The first equation in (18) is identical to the continuity equation.
Compare the second equation in (18) with the Navier-Stokes equation written here in a slightly different
form.

vuiji - Ui (ui,; + u, - Ai = 0 (19)

where f = p* - (1/2)u2. Observe that the problem in adjoint variable zj' is analogous to the the Navier-
Stokes problem in variable ui with the following exception: the convective velocities in the adjoint problem
are specified rendering the problem linear and are obtained from the direct problem. These convective
velocities, u , are identical in magnitude but opposite in direction to those of the "direct" problem. The
boundary conditions for the adjoint variables are z = -ui on r. Hence on the walls they imply a no
slip condition as in the direct problem. But at the inflow and outflow boundaries, "adjoint" flow is found
entering at the domain exit ro and leaving at the domain entrance r1, thus suggesting an "adjoint" flow in
the direction opposite to that of the actual flow.

The above interpretation of the adjoint variable problem will be useful in constructing a modified
problem whose solution will provide numerical values, albeit approximate, for the shear stress, au,/an, and
the adjoint shear stress, czi/an, in (15). It is found that a shape optimization algorithm that obtains its
boundary movement from these approximate numerical solutions does indeed lead to diffuser shapes that
satisfy the optimality condition.

4. NUMERICAL ASPECTS

The boundary conditions chosen for the diffuser in the above formulation are of Dirichlet type. A
parallel flow of arbitrary distribution is assumed to exist at the diffuser entrance and exit. These boundary
conditions are clearly unrealistic both from a practical as well as computational standpoint. However this
is the only set of boundary conditions for which we have been able to derive the adjoint variable problem.
Given this limitation it was decided to verify whether the boundary movement suggested by (15) would
continue to provide a means to obtain optimum shapes even if some of the Dirichlet conditions were replaced
with computationally suitable Neumann conditions.

Boundary Conditions for Navier.Stokes Equations

A parallel flow assumption at the upstream boundary implies Dirichlet boundary conditions for both
the velocity components. Instead a computationally desirable Neumann condition for the transverse velocity
component (au 2/an = 0 on ri) is substituted while retaining a Dirichlet condition for the streamwise com-
ponent. A parabolic profile corresponding to a fully developed laminar flow is specified for this component.
At the downstream boundary the parallel flow assumption is replaced with computationally desirable Neu-
mann conditions for both the velocity components (au1 /an = au 2/an = 0 on to). Similar approximations
will be made in the solution of the adjoint variable problem, keeping in mind the reversal of the role of
entrance and exit boundaries. At the solid wall, a boundary whose profile is to be determined, a no slip
condition is enforced. At the diffuser centerline the usual symmetry conditions are used since the flow is
assumed to be symmetric. At the entrance, exit, and wall, pressure has been extrapolated from the within
the domain by assuming that the second derivative of the pressure vanishes on the domain boundary. At
the centerline symmetry condition is imposed for the pressure.
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Boundary Conditions for Adjoint Equations

The role of entrance and exit are reversed for the adjoint equations. Therefore, at the exit boundary
a Dirichiet type condition is used only for the streamwise component of the co-state vector. Therefore we
set z, = ul on ro, with ul taken from the solution of the Navier-Stokes equations. For the remaining
component z2 of the co-state vector at exit and for both components of the co-state vector at entrance,
Neumann conditions are employed instead. At the wall where all velocity components vanish and therefore,
zi, the co-state vector that is analogous to the velocity is set to zero. The adjoint variable, r*, is analogous
to the pressure term in the Navier-Stokes equations and hence no analytical boundary condition is available
for this variable. However, a computational boundary condition is implemented for this variable. The value
of r* is extrapolated to the boundary from values at interior points assuming that the streamwise second
derivative vanishes at the boundary. This is done at all boundaries except at the centerline where a symmetry
condition is enforced.

5. NUMERICAL SOLVERS

Navier-Stokes Equations Solver
The primitive variable form of the incompressible steady Navier-Stokes equations is solved using an

artificial compressibility formulation due to Chorin(1967). In this formulation, the continuity equation
is modified using the time derivative of the pressure term. The steady-state solution of the Navier-Stokes
equations is then obtained as the large time solution of the unsteady momentum equations with the perturbed
divergence equation. These unsteady equations are:

pt + 8u, = 0 (20)

ui't + (ujuj)' = -p*, + 'uiji

where P is analogous to the speed of sound. Note that these equations do not represent any transient physical
phenomenon and hence the transient solution has no physical meaning until steady state is attained. This
is indicated by the vanishing of the time derivative terms in the numerical solution.

The equations are normalized using the velocity and length scales V and W, defined earlier. In addition
time and pressure are normalized using the ratio W1/V and pV 2 respectively. The Reynolds number of the
flow through the diffuser is then given by Re = (V . W1 ) /v.

The equations are discretized in space using a finite volume formulation. The spatial discretization is
performed on the conservative form of the governing equations using a central difference scheme.

An explicit one-step multistage Runge-Kutta stepping scheme is used for integration in time. Since
transient behavior is not an issue and a larger time step is desirable, a four-stage Runge-Kutta scheme
with first order accuracy in time and a relatively high Courant-Friedrichs-Lewy (CFL) number has been
chosen. In order to improve the convergence rate, a local time step is computed for each cell at each elapsed
time level. These time steps have been estimated from a stability analysis of the algorithm. A fourth
order linear artificial dissipation term is introduced to damp the high-frequency oscillations associated with
the so-called sawtooth or plus-minus waves, i.e. waves associated with the shortest wavelengths. Implicit
residual smoothing is performed at each iteration to enhance the stability region of the technique. A more
complete discussion of the finite volume formulation, stability considerations, local time stepping, artificial
dissipation, implicit residual smoothing and the computational boundary conditions is provided in Cabuk,
Sung and Modi (1991).

The computational grid is generated by solving a set of elliptic partial differential equations similar
to those suggested by Thompson et al. (1974). The set of algebraic equations thus obtained is solved by
successive over-relaxation (SOR). A typical grid is shown in figure 2. Grids generated by this method were
nearly orthogonal and the cell dimensions in each direction are approximately equal.

Adjoint Equation Solver
The solution to the adjoint set of equations is obtained as the steady state solution to the following set

of equations:
rt= _#2Z,,,

Zi't = V.Z,ii+ ijij + 2ij (zkzk),i - r* (21)221
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where r" = r - zkzk,i. A nonlinear term -1 (zkzk),, is introduced in the above equation to enhance the rate
of convergence. The utility of this term was established by means of preliminary calculations performed on
a straight duct geometry where an exact solution of the Navier-Stokes solution is known for fully developed
laminar flow.

The equations are normalized following a procedure similar to that utilized for the Navier-Stokes equa-
tions. The nondimensional form of the above equation is identical to the equations above with the exception
of the first term on the right hand side of (21) where the kinematic viscosity, v, is replaced by the reciprocal
of the Reynolds number.

The numerical algorithm for the solution of the adjoint set of equations is essentially similar to the
algorithm for the Navier-Stokes equations. Some subtle but important differences do exist since the equations
solved are after all not the same. A discussion of the numerical algorithm is presented here, since this solution
to the best of our knowledge represents the first successful numerical solution of the adjoint set of equations
in the absence of either a thin boundary layer or a Stokes flow assumption. Spatial discretization is carried
out by centered-difference finite volume formulation. The term, uj (zj + z,;), on the right hand side of (21)
is not in a divergence form. In the treatment of this term the velocities, ui, which have already been obtained
by the Navier-Stokes solver, are treated as known quantities and are assumed constant inside each cell. Hence
the volume integral over the cell is performed by applying the divergence theorem to the remaining part of
this term, i.e. (zij + zy,).

The other terms in (21) are treated in the same fashion as the finite volume formulation of the Navier-
Stokes equations. A fourth order linear artificial dissipation term is introduced tf- damp high-frequency
oscillations. Time integration is carried out by a Runge-Kutta scheme with local time stepping. The
discrete form of the equations for the adjoint problem are:

AV~ - (AS, +1B6., + CSK)q = Re- 1  + L4 (2'
- = E-g -(SI6 + sJ, + SK62 )q - cKi,6 + 84 + 4 )q (22)

where
w 0 #2SIX , 2SIY fl2SIZ 1

A = SIX U + (ui - z) SIX (ui - z:) SlY (u - zI) SI I
SlY (u2 - Z3) SIX U + (u 2 - 2) SlY (u2 - Z2 ) SIZ
SIZ (u3 - Z3) SIX (u3 - Z3) SlY U + (u3 - Z3) SIZJ

0 fl2SJX fp2SJY p2SJZ 1

B SJX V + (ul - z)SJX (ul - zi)SJY (ul - zi)SJZ I
B SJY (u2 -z 3 )SJX V +(u 2 -z 2 )SJY (u2 -z 2)SJZ ]

SJZ (u3 - Z3) SJX (u3 - Z3) SJY V + (u3 - Z3) SJZ

0 fi2SKX p2SKY p2SKZ

C SKX W + (u, - zj) SKX (u, - zi) SKY (u, - zj) SKZ
SKY (u2 - z3 ) SKX W + (u2 - z2) SKY (U2 - Z2) SKZ
SKZ (U3 - Z3) SKX (U3 - Z3) SKY W + (U3 - z3) SKZI

E [=0 0 0010= 0 1 00 1

o o
and

q = [r,zIz 2 , z 3 1T

with
U = u1SIX + u2SIY + u3SIZ, SI = SIX2 + SlY 2 + SIZ2,
V = uISJX + u2SJY + u3SJZ, SJ = SJX 2 + SJY 2 + SJZ2,
W = ujSKX + u2SKY + u3SKZ, SK = SKX 2 + SKY 2 + SKZ 2



-,hird: Internationil Conferencze on :Thverse Deig6 id- Otiikat6, ii -Enjifiiig- Sinces
(ICIDES-Walh'Edinog:t'o-h"', 'D-oii C.C Octbb er23-i5," 199i'

The volume of the' cell is AV anid- (SX, SIY, SIZ) (SJX, SJY, sJZ) and (SKX, SKY, SKZ) are the
surface-area vectors normal to the I, J andK cellsirfaces, respectively. SI, SJ and SK are the squares
of. the surface areas of I, J and K cell surfaces, respectively. The first, second and: fourth- order centered
differences are defined in the same fashion as in Sung(1987). The maximum local time step permitted for
stability is obtained by neglecting both the viscous and the artificial dissipation terms in the adjoint problem
and is given by

At < CFL ( AO (23)

The maximum eigenvalue, A0 , in the above equation is estimated as

AO = [C + / 2+ #202 (24)

where
= IUI + ISIX (U1 - zi) I + ISIY (U2 - Z2) I + ISIZ (u3 - Z3) I

" IVl + ISJX (Ul - zI) I + ISJY (U2 - 2) I + ISJZ (U3 - Z3) I
+ IWI + ISKX (u, - zj) I + 1SI Y (U2 - Z2)1 + ISKZ (U3 - Z3) I

and
02 = (ISIXI + ISlYI + ISIZI)2

+(ISjXl + ISJYI + ISjZI)2

+(ISKXI + ISKYI + ISKZI) 2.
The maximum eigenvalue of the resulting matrix system, including both the viscous terms and the artificial
dissipation term has been estimated as

A(, =VA + (4Re-'SI/AV + 16cK)2

+VA2 + (4Re--SJ/AV + I6cK)2  (25)

+V,\ + (4Re-'SK/1AV + 16cK)2

where

A=[(a1 + VUq2+ #2S1]

Aj = 1[OJ+ cI2 + p2SJ1
2 =

AK=.~[tY 2 1+ #2SK]
AK= iOK+ + & S

and
O1 =JUI + ISIX (U - Z) I + JSIY (U2 - Z2) I + ISIZ (Us Z3)1
CYJ =IVI + ISJX (u - z) I + ISJY ( 2 - 2) I + ISJZ (U3 - z3)1
OK =iWi + ISKX (u, - zi) I + ISKY (U2 - Z2)I + ISKZ (Us - Z3)

Then the local time step has been computed from (23) with the maximum eigenvalue given by (25).

Profile Modification Algorithm

The principal steps of the optimization procedure are;

a) Choose an initial diffuser profile.
b) Generate a computational grid that conforms to the diffuser wall.
c) Obtain the steady state solution to the direct problem.
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d) Obtain the steady state solution to the adjoint problem, by treating the required velocities as known
from step (c).

e) Compute aui/ar and az;/an from the solutions in steps (c) and (d) respectively. Choose a non-negative
weighting function w(s) and hence obtain p(s) from (15).

f) Move nodes on the diffuser wall to be profiled along the outer normal direction by p(s). The curve
connecting the nodes after this movement represents the new diffuser profile.

g) Go to step (b) unless the change in diffuser pressure rise obtained from step (c) is smaller than a desired
convergence parameter.

The iterative profile modification process is continued until the change in pressure rise is a small fraction
of the total pressure rise. An alternate method is to continue the process until the value of p(s) everywhere
along the wall is less than a critical value. In step (e), the weighting function, w(s), is chosen to be
proportional to the arclength, s, along the diffuser wall measured from the diffuser entrance. This ensures
that the entrance width is maintained constant but the exit width may vary with the diffuser profile. When
shifting the diffuser wall to a new curve obtained from step (f) some care must be exercised since the curve
is being redefined using only a finite number of discretely spaced points. Checks are performed on the
location of points on the new curve to ensure that boundary nodes do not conglomerate or coalesce after
their movement to a new position. Heuristic measures are also adopted to ensure that the appearance of
small amplitude wiggles in the new profile are damped to some extent so as to prevent the growth and built
up of numerical errors in the subsequent calculation

RESULTS AND DISCUSSION

Using the numerical solvers and the profile modification algorithm described above, optimum diffuser
profiles have been obtained for a single diffuser length L/W = 3 at Reynolds numbers Re=50, 100, 200 and
500. A sound speed, #2, of 2 for the Navier-Stokes equations and 2.5 for the adjoint equations was used at
all Reynolds numbers. The calculation at Re=200 (henceforth called the reference case) has been examined
in particular detail to establish issues of convergence and accuracy.

The reference case was first examined for convergence of the profile modification algorithm. For this
purpose, a computational grid of 61 nodes in the x and 31 nodes in the y directions is employed, both for
the Navier-Stokes as well as the adjoint variable problem. Beginning with an initial shape the diffuser profile
was obtained after each application of the shape modification algorithm. The initial profile and some of the
intermediate profiles are shown in figure 3. The change in the profile shape is observed to be small between
the fourth and the ninth iteration and the change was found to be insignificant after nine iterations. Hence
the iterative process is stopped at the ninth iteration providing a reasonably converged optimum shape. The
question of computational accuracy of the solvers and hence the accuracy of the optimum profile is addressed
next.

The precise error due to a finite grid size on the optimum profile is difficult to determine since the actual
optimum curve is not known apriori, nor are any other calculations or experimental data available. However
one way to estimate the effects of the unavoidable truncation errors in a numerical calculation is to obtain
the optimum diffuser profile using progressively finer grids until the there is no change with grid size. Once
again the reference case of Re=200 was examined for this purpose using grids of 31 by 16, 61 by 31 and
finally 121 by 61. The optimum profiles obtained using the three grids are shown in figure 4. The results
show that the difference between the shapes is negligibly small, providing some evidence that at these grids
the contribution of the truncation errors may not be significant. In view of this observation, a grid size of
61 by 31 is found to be a suitable compromise between accuracy and computational work for the results
presented here.

In an earlier section we proposed that it was computationally desirable to replace some of the Dirichlet.
type boundary conditions with Neumann-type conditions in both the Navier-Stokes and the adjoint equation
solvers. To justify at least partially the validity of solving the modified numerical problem we must verify
whether the optimum shapes obtained in this fashion do indeed satisfy the optimality condition, i.e. vanishing
shear stress on the wall, arising from the analysis.

In figure 5 the wall shear stress normalized by the corresponding value for a straight duct, is shown
for the optimum shape as well as at several intermediate stages of iteration. The wall shear stress for the
optimum shape is found to be vanishingly small for all but 10 percent of the wall at the upstream end.
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The shear stress distributions at intermediate iterations demonstrate a monotonous decrease towards the
optimum values. Closer examination of the shear stress for the optimum and intermediate shapes at other
Reynolds numbers confirm the same behavior as well. Hence the results obtained do provide some aposteriori
justification for the boundary condition approximations made in the modified numerical problem.

Further justification is sought by examining the behavior of the objective function for the reference
diffuser. The velocity averaged static pressure rise (i.e. the objective function defined by equation 2) is
shown in figure 6 at successive iterations of the shape modification process. The objective function for this
modified numerical problem is indeed found to increase with each application of the boundary movement
suggested by equation (15). The area averaged static pressure rise through the reference diffuser also increases
with with shape modification as seen in figure 6. These observations are found to be valid at calculations at
other Reynolds numbers in the present study as welL

In addition to the reference case, calculation of the optimum diffuser profile was carried out at three
other Reynolds numbers, Re= 50, 100 and 500. In figure 7, these profiles are shown for a diffuser of L/W 1 = 3
for a grid of 61 by 31. At lower Reynolds numbers the optimum diffuser profile permits a larger exit area to
inlet area ratio as one would expect higher viscous effects to support greater diffusion without separation.
The angle at which the diffuser profile departs at the upstream corner is difficult to compute accurately since
the flow in that corner may not be accurately resolved. Nevertheless, the approximate angle decreases from
56 degrees to 19 degrees as the Reynolds number increases from 50 to 500. For the Reynolds number range
in which numerical solutions are presented here, further refinement of the grid did not lead to any significant
change in the optimum profile. This was not found to be true of computations at Reynolds numbers higher
than 500.

To evaluate the performance of the optimum diffuser, a pressure recovery coefficient, Cp, is defined,
which is the ratio of the static pressure rise of the optimum diffuser to the static pressure rise for an ideal
diffuser (in potential flow) with the same W2 /W1 ratio as the optimum diffuser. Note that the denominator
of this ratio is independent of the actual profile between the upstream and downstream cross-sections of the
diffuser. Using Cp as a parameter, the performance of the optimum diffuser is now compared with that of
a straight walled diffuser with the same W2 /W1 ratio at several different Reynolds numbers in the laminar
regime. The C, values of straight diffusers are found numerically using the Navier-Stokes solver on the
straight walled geometry without any shape modification steps. As seen from figure 8, the Cp values for the
optimum diffusers are always higher than those for straight diffusers.

in conclusion, the feasibility of shape optimization for incomprecsible laminar flows has been demon-
strated. This approach may also be adopted to other domain optimization problems where the performance
depends on the geometry of the component, and flow is governed by the viscous laminar flow (either com-
pressible or incompressible) equations. It may also be possible to consider variations of the objective functions
depending upon the design criterion of interest. All computational results presented in this paper were car-
ried out either on an Intel 30386 33MHz microprocessor based machine or on a microVAX II workstation.
The CPU times for these calculations are of the order of several hours. The theoretical framework as well as
numerical solution code for the extension of the method to three-dimensional flow now exist and such flows
are the subject of study by the authors at present.

The research reported in this paper is based upon work supported by the National Science Foundation
under Grant No. CBT-87-10561.
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Figure (1) Schematic diagram of a plane diffuser. Flow enters at upstream boundary J'1 and
exits at the downstream boundary ro. The wall to be shaped is rm and symmetry
line is ro.
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Figure (2) A typical computational grid for a plane diffuser obtained using the grid generation
program. Grid size is 61 by 31. This wa.9 the domain for the optimum diffuser at
Re=200 and L/W 1 = 3.
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Figure (3) Profiles Of a reference diffuser at successive iterations. The grid size is 61 by 31. 0
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Figure (4) Effect of grid size on optimum profile of a reference diffuser. 0 31 by 16, nl 61
by 31, * :121 by 61.
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Figure (5) Normalized wall shear stress at successive iterations for a reference diffuser. The
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Figure (6) Static pressure rise through the reference diffuser at successive iterations. The grid
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Figure (7) Optimum diffuser profiles at different Reynolds numbers for LIWI 3. Grid size is

61 by 31. 0: Re=50, nl Re=100, A: Re=200, ~:Re=500.
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Figure (8) Variation of the pressure coefficient, Cp with Reynolds number for L/W 1 =3. 0
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Abstract

A fast, efficient and user-friendly inverse design system for three-dimensional nacelles has been de-
veloped. The system is a product of a two-dimensional inverse design method originally developed at
NASA Langley Research Center (LaRC) and the CFL3D analysis code which was also developed at
NASA LaRC and modified at GEAE for nacelle analysis. The design system uses a predictor/corrector
design approach in which an analysis code is used to calculate the flow field for an initial geometry,
the geometry is then modified based on the difference between the calculated and target pressures. A
detailed discussion of the design method, the process of linking it to the modified CFL3D solver and
its extension to three-dimensions is presented in this paper. This is followed by a number of examples
of the use of the design system for the design of both axisymmetric and three-dimensional nacelles.

L j
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SFntroduction 1
The purpose of a nacelle, on a high bypass ratio turbofan engine is to supply the airflow required
by the engine efficiently with low distortion levels, provide a low drag aerodyndmic enclosure for the
engine hardware, and expand the exhaust gasses from the engine through an exhaust system with
maximum efficiency. The nacelle has three major components, the inlet, the fan cowl and the exhaust
system (Figure 1). The nacelle's crown, side and keel cuts are also shown in Figure 1. In this paper
a three-dimensional inverse design technique is presented for the aerodynamic design of the fan cowl
of the nacelle. In this inverse design method, the designer analyzes an initial geometry and then
interactively modifies the resulting pressure distribution to remove any undesirable features. The
method then determines the nacelle geometry that will give the desired pressure distribution.

A diverse variety of inverse methods have been developed for airfoils and wing design. An overview
of these methods can be found in review papers by Slooff [1] and Dulikravich [2]. Many of these
methods, however, are often only suited to specific applications and are not easily extendible to meet
the requirements of nacelle design. Examples of this are the Hodograph method of Bauer, Garabedian
and Korn [3], which is limited to two-dimensional airfoil and turbomachinery flows and the fictitious
gas method [4] which is only suitable for the design of transonic shock free flows.

Unfortunately, modern high bypass ratio turbofan engine nacelles are far from axisymmetric and to
obtain a meaningful solution a fully three-dimensional analysis has to be performed. There are also
geometric constraints imposed on the design process that the inverse method must be able to handle.
In an acro engine, the fan nozzle acts as the throttle controlling the engine operating characteristics;
therefore the fan nozzle area, and thus the radius of the trailing edge of the fan cowl, must remain
fixed in the design process. Similar constraints apply to the nacelle inlet area, so that the radius of
the leading edge of the fan cowl must also remain fixed during the design process. The aerodynamic
designer, therefore has to design a surface between two fixed endpoints. In reality, the situation
can be further constrained. The trend in the aero engine industry has been to produce derivative
families of engines. When designing the nacelle of a derivative engine there can be large economic
incentives to keep as much of the hardware common between the members of an engine family. This is
especially true for complex components that have high initial tooling costs such as the inlet anti-icing
system and the thrust reverser. In these cases, the aerodynamic designer may be limited to changes
in the geometry between about 5% and 60% of the fan cowl length. The new surface having to blend
smoothly with the existing hardware.

In this paper an inverse design technique is described that meets the needs of the fan cowl designer
in that it is three-dimensional and allows either all or a portion of the fan cowl to be modified. The
method incorporates the CFL3D [5] analysis code and the inverse design technique of Campbell and
Smith [6,7].

Aerodynamic Code

CFL3D was developed by the Computational Fluid Dynamics Laboratory at NASA Langley Research
Center [5] and modified at General Electric Aircraft Engines (GEAE) for nacelle analysis [8]. The
modified code solves the Euler equations by using a finite volume discretization method. Solutions are
advanced in time with a spacially-split three-factor approximate factorization method in diagonalized
form. The flux quantities are represented using the flux-vector-splitting approach of Van-Leer with
hird-order spacial accuracy. Special features include multigrid convergence acceleration and thej.J
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Fbilty to handle multiple grid blocks with, a variety of block interfaces and boundary conditions. 1

The Euler equations express the conservation of mass, momentum, and energy for an inviscid, non-
conducting gas in the absence of external forces. The conservation form of the equations in generalized
coordinates i.:

bt 4 b'7 4
where

LeJ

pU
1 pUu+ ~PF=- pUv + P

pUw + YP
PUW + %zP

(e+ P)U

pV
pVu + 77,P
pVv + %P
pVw + 7,zP(e + P)V

- pWY

pWu + ('Pf1 = + (VP
pWw + (,P

(e + P)W

The equations are non-dimensionalized in terms of the reference density p . and the speed of sound
ane. The cartesian velocity components are u,v,w in the x,y and z cartesian directions. The pressure,
P, is related to the conserved variables, Q, through the ideal gas law:

P= - ) [e22 e- p (u' + v + w2)]
2

where -' is the rato of specific heats (7 = 1.4). U, V, and W are the contavariant velocity components

in the , .q, and C directions respectively. J is the Jacobian of the transformation and e represents the
interrtal energy.

The boundary conditions used consist of far-field, solid surface and fan face boundary conditions. The
fartfield boundary condition is based on Riemann invariants for a one-dimensional flow. On the solid
surface of the nacelle and spinner, the velocity normal to the wall is set to zero and a slip condition
is imposed. In order to simulate the exhaust plume, the fan cowl is extended downstream of the
fan nozzle as a solid body. A full description of how this is achieved is given in reference 8. The
intake flow rate i6 controlled by setting the fan face boundary condition (static pressure). The fan
face static pressure required for a given flow rate is calculated using a one-dimensional flow equation.
Since the pressure does not account for the three-dimensional effects and loss in the flowfield it is
readjusted based on results from the one dimensional analysis. A symmetry boundary condition is
Lalso placed at the nacelles's vertical plane of symmetry when cross-wind or yaw requirements are no
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",cross-wind or yaw, a full -360 degree grid is used with a continuous boundary conditionspecified at-the
vertical plane ofgeometric symmetry (Figure 2). An option is also available to analyze axisymmetric
configurations that only requires one computational, cell -in the circumferential direction. This code
has been validated-against test data for a large range of nacelle designs and operating conditions. For
further details on the modified version of CFL3D for three-dimensional nacelle analysis see reference
8.

Design Method

The predictor/corrector approach used by this design method is illustrated in Figure 3. A target
pressure distribution is specified by the designer that has desirable characteristics such as no shocks,
no steep diffusions or favorable pressure gradients for r:z.dral laminar flow. The aerodynamic analysis
code (CFL3D) is used to determine the pressure distribution on an initial geometry. The nacelle
surface pressure coefficients are compared with the target pressure distributions in the design module.
The initial geometry is then modified based on the pressure differences. The grid is then perturbed
and the new geometry is analyzed in the analysis code to determine its pressure distribution. This
process continues until the convergence criteria specified by the designer is reached.

Design Algorithm

The design method, described in reference 6, uses two design algorithms, one for subsonic flow and
the other for supersonic flow. The supersonic algorithm is blended with the subsonic algorithm to
design regions of transonic flow. Both algorithms assume that ACp is proportional to the change in
geometry.

The subsonic algorithm is based on the assumption that changes in curvature are directly proportiopal
to changes in pressure coefficient. The relationship used to express the change in curvature az a
function of change in pressure coefficient is:

AC = ACpA(1 + C2)B

where
C is the curvature
Cp is the pressure coefficient
A = +1 for the upper surface, -1 for the lower surface
B = input constant ranging from 0.0 to 0.5

The derivation of this equation is given in reference [61. The change in curvature is converted to a
change in r" by using the formula

Ar" = AC +

where
r is the surface radius
r' is the surface slope

L r" is the second derivative of surface radius



409
Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences
(ICIDES-TID.) Editor: G.S. Dulikravich. Washington D.C.. October 23-25. 1.991.

rihis equation assumes that the changes in the surface slope are small. 1

The supersonic algorithm is based on supersonic thin airfoil ,theory. Based on relations between the
pressure coefficients and surface slope the expression

Ar' = KACP

can be derived [6]. Differentiating this expression gives the following relationship between r" and
ACP.

A,,,= iKd(ACp)
dx

The value for the constant K is 0.05 and is used to under relax the changes in the geometry during
each design iteration.

Using these equations the required change in r" is calculated at each point along the fan cowl. To
change the magnitude of r" at point I without changing r" at other locations, points I+l through N
are rotated through a given angle. Figure 4 shows the result of this process.

Closure of the Design Range

It is clear from Figure 4 that in general the last point in the design range will not remain fixed and
therefore a method of closing the geometry is required. The method suggested in reference 6 was to
rotate the newly designed section about the most forward point of the design range so that the end of
the design range closes. This process, however, leaves a surface slope discontinuity at the beginning
of the design range. If the beginning of the design range was the nacelle's leading edge, then an
option would be to blend a new leading edge geometry into the modified nacelle. This was felt to
be undesirable as a nacelle's off-design (takeoff, climb etc.) performance is critically dependent on
the leading edge shape. An alternative would have been to smooth the geometry in the region of the
slope discontinuity but there is no guarantee that the resulting pressure distribution in this region
will be smooth.

A solution of this problem was found in a paper by Lin etal. [9] where they advocate modifying the
target pressure distribution to ensure that the end point of the design range remains fixed. In this
method a sine function is added to the target pressure with the maximum modification at the center
of the design region, and zero at the ends (Figure 5). The amplitude of the sine function is iteratively
determined by using the secant method. Figure 6 shows the logic used to close the geometry by
modifying the target pressure distribution. This process is performed at each design update and it
has been found that this scheme normally converges in three iterations.

Coupling the Design to the Analysis Code

For ease of use, the design algorithm has been incorporated as a module in a modified version of
the CFL3D analysis code. The information that is passed from the design module to CFL3D is an
updated computational grid that reflects the changes in surface geometry calculated by the design
algorithm. Rather than regridding the complete configuration every design calculation, a grid per-
turbation scheme has been developed. In this scheme the grid lines along the fan cowl surface are
moved radially to account for the change in surface geometry. This is repeated for the grid line away
rom the nacelle surface but the change in radius is reduced linearly with the local radius, so that the
uter boundary does not move. j
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'iThe normal procedure for designing a nacelle is that the designer analyzes a first guess at the nacelle]
geometry using the CFL3D code. An interactive graphic program has been written that presents
the designer with the nacelle surface Mach number distribution and allows the designer to specify
the portion of the surface to be modified. The designer can interactively alter the Mach number
distribution in order to obtain the desired characteristics for the target pressure distribution. CFL3D
is then run with the design option active. The converged solution from the initial nacelle geometry can
be used as the starting solution. The difference between this solution and the required target pressure
distribution is used by the design module to calculate a new geometry. The grid is perturbed and
the geometry is re-analyzed. Numerical studies have shown that after each pass through the design
module the analysis does not have to be fully converged. It has been found that only 40 iterations of
CFL3D are needed, where as, 250 iterations would be required for full convergence. About 20 passes
through the design calculation are needed to obtain a pressure distribution that matches the modified
target pressure distribution to engineering accuracy for a typical design. Convergence is slowed if the
original geometry has large supersonic patches with strong shocks or if the designer is making large
changes to the pressure distribution.

Axisymmetric Results

Because the design method does not account for three-dimensional (circumferential) effects, the first
test cases that were run were purely axisymmetric. The results of two of these runs are presented in
Figures 7 and 8. The design range for both of these cases is the complete length of the fan cowl. In
the first test case the the inverse design method was used to eliminate a shock on the fan cowl as
shown in Figure 7a. A comparison of the final pfessure distribution and the initial and modified target
pressure distributions are shown in Figure 7b. The final pressure distribution matches the modified
target distribution almost perfectly. As shown, the difference between the initial and modified target
pressure distributions, is quite small. Figure 7c shows a comparison of the initial and final geometry.

The same geometry is used in the second test case (Figure 8) but larger changes are being made to the
pressure distribution. In this case a significant change in the target pressure distribution is required
to close the geometry but the characteristics of the final pressure distribution are still similar to the
designers intent. Figure 8b shows that the final pressure distribution matches the modified target
distribution quite well. At the trailing edge, however, there is a small difference because the geometry
downstream of trailing edge is fixed during the design, resulting in a discontinuity in surface slope
and curvature. This highlights the problem of how one specifies a pressure distribution that ensures
that the geometry at the end points of the design range match and the pressure distribution remains
smooth.

Three-Dimensional Extension

Having shown that the axisymmetric inverse design code works well, the next stage was to extend
it to the design of three-dimensional nacelles. In the axisymmetric version only one radial cut is
considered. For three-dimensional nacelles, the radius varies from crown to keel and so a number of
circumferential cuts must be taken into account during the design process.

Three options were considered for the three-dimensional version. The first option requires the designer
to specify the target pressure distribution at each circumferential cut of the grid (typically 13 cuts
lare used on a 180-degree sector). The problem with this approach is that there is no guarantee of aj
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F mooth geometry in the circumferential direction (Figure 9). Thus, the designer would have to know2

how to distribute the pressure distribution circumferentially to ensure a smooth geometry. It was felt
that this would be difficult to achieve, and therefore this option was rejected.

The second option requires the designer to specify the target pressure distribution on only three cuts
(crown, side and keel). The design procedure would be used on only these cuts and the remaining
cuts would be designed by parabolically interpolating the new radii circumferentially. The problem
with this method is that the original cross-sectional geometric shape of the nacelle is not preserved
during the design. As shown in Figure 10, the elliptic shape of the original nacelle cross-section is
altered to a parabola by the interpolation scheme.

The third option considered was very similar to the second one. With this option the designer specifies
the target pressure distribution on the crown, side and keel cuts but the remaining cuts are designed
by parabolically interpolating the changes in the radii from these three cuts (Figure 11). With this
approach the essence of the original cross-sectional shape of the nacelle is preserved and some degree
of smoothness in the circumferential direction is ensured.

The third option was chosen to be used in the three-dimensional version of the inverse design method.
As stated before, the designer specifies the target pressure distribution on the crown, side and keel
cuts, of the nacelle. At each design iteration all three cuts are redesigned using the same design method
as had been used in the axisymmetric version. No attempt has been made to extend the relationship
between change in Cp and change in geometry to account for three-dimensional (circumferential)
effects. The changes in geometry from the three cuts are then interpolated for the other radial cuts
and the grid is perturbed in a similar manner to the axisymmetric version. Experimentation has
shown that although changes made in the crown cut, for instance, do effect the flow at the side cut
and to a lesser extent the keel cut, these effects do not cause instabilities in the design scheme.

Three-Dimensional Results

The results for a three-dimensional test case are shown in Figures 12 through 14. In this case the
design range started at the nacelle leading edge and ended 10 inches upstream of the nacelle trailing
edge. The Mach number distributions along the crown, side and keel cuts of the original nacelle as
well as the desired target Mach number distribution are shown in Figure 12. Figure 13 shows the
Mach number distribution achieved after 40 design iterations and the initial and final target Mach
number distributions. The resulting modifications to the geometry is shown in Figure 14. It should
be noted that the vertical scale has been expanded so that the change in geometry can be clearly
seen.

Summary

A predictor corrector design method originally developed by Campbell and Smith has been coupled to
a modified version of the CFL3D analysis code and extended to allow the design of three-dimensional
nacelles. A designer can interactively modify the Mach number distribution of the crown, side and
keel cuts of a fan cowl and the required geometry is automatically calculated. The method is capable
of designing any local region of the fan cowl, the remainder being fixed, although further work is
required in determining how to specify the pressure distribution so that both the geometry and
Lpressure distribution are smooth at the end points of the design range. j
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jFurther work isbeing pursued to.try and4f~ducethlofeinputationalifne required bythe meihqd. The
aim is to reduce the-ctst of an inverse design. caculatipn -from the:present ,Va ue 6-about f6urtimes
that of an analysis calculation, to -about twice. Future work on the choice bf an optimum p ressure,
distribution that, meets both geometric constraints and off-design performance criteria is also- being
considered.
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VORTEX GENERATOR DESIGN FOR AIRCRAFT INLET

DISTORTION AS A NUMERICAL OPTIMIZATION PROBLEM

by

Bernhard H. Anderson
NASA Lewis Research Center

Cleveland, OH 44135

and

Ralph Levy
Scientific Research Associates, Inc.

Glastonbury, CT 06033

INTRODUCTION

Aerodynamic compatibility of aircraft/inlet/engine systems is a difficult design problem for
aircraft that must operate in many different flight regimes. Take-off, subsonic cruise, supersonic
cruise, transonic maneuvering and high altitude loiter each place different constraints on inlet
design. Vortex generators, small wing-like sections mounted on the inside surfaces of the inlet
duct, are used to control flow separation and engine face distortion. This paper attempts to
define the design of vortex generator installations in an inlet as a problem addressable by
numerical optimization techniques. A performance parameter is suggested to account for both
inlet distortion and total pressure loss at a series of design flight conditions. The resulting
optimization problem is difficult since some of the design parameters take on integer values. If
numerical procedures could be used to reduce multi-million dollar development test programs to
a small set of verification tests, numerical optimization could have a significant impact on both
cost and elapsed time to design new aircraft.

Inlet flow distortion is one of the most troublesome and least understood problems for
designers of modern inlet engine systems (Refs. 1 and 2). One issue is that there are numerous
sources of flow field distortion that are ingested by the inlet or are generated within the inlet duct
itself. Among these sources are (a) flow separation at the cowl lip during maneuvering flight, (b)
flow separation on compression surfaces due to shock-wave boundary layer interactions,
(c) spillage of fuselage boundary layer into the inlet duct, (d) ingestion of aircraft vortices and
wakes emanating from upstream disturbances, and (e) secondary flow and flow separation within
the inlet duct itself. Most developing aircraft have experienced one or more of these types of
problems, particularly at high Mach numbers and/or extreme maneuver conditions, such that flow
distortion at the engine face exceeded allowable limits. Such compatibility problems were
encountered in the early versions of the B70, the F-111, the F-14, the MIG-25, the Tornado aad
the Airbus A300, to name a few examples.

The effect of inlet distortion, be it pressure or temperature, steady or transient, is that the
power available is reduced along the engine compressor surge margin (i.e. the difference
between the operating line and the surge line). Aeromechanical effects such as rotor-blade
forced response and distortion effects on flutter boundaries have received less attention, so that a

L I
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consensus on importance and state-of-the-ari methodology has yet to emerge. Stability
characteristics of current high performance turbofan engines are adversely affected by both
spatial as well as temporal distortion.

PROBLEM DEFINITION

One of the most commonly used methods to control local boundary layer separation is with
the placement of vortex generators upstream of the problem area. Vortex generators in use today
are small wing sections mounted on the inside surface of the inlet duct or wing surface, inclined
at an angle to the oncoming flow to generate a shed vortex. The generators are usually sized to
local boundary layer height to allow for the best interaction between the shed vortex and
boundary layer itself, and are usually place in groups of two or more upstream of the problem
area. The principle of boundary layer control by vortex generators relies on induced mixing
between the external or core stream and the boundary layer region. This mixing is promoted by
vortices trailing longitudinally over the duct surface adjacent to the edge of the boundary layer.
Fluid particles with high momentum in the streamwise direction are swept along helical paths
toward the duct surface to energize, and to some extent to replace, the low momentum boundary
layer flow. This is a continuous process that provides a source of re-energization to counter the
natural boundary layer growth caused by friction, adverse pressure gradients, and low energy
secondary flow accumulation.

There are two basic configurations of vortex generators. In one configuration, all the vortex
generators are inclined at the same angle with respect to the oncoming flow direction. These are
called co-rotating configurations because the shed vortices rotate in the same direction. In the
other configuration, the vortex generators are grouped in pairs one at a positive angle of attack
and one at a negative angle of attack, such that pairs of counter-rotating shed vortices are
generated. Co-rotating vortex generators are very effective in reducing flow separation if the
generators are properly selected and located. The main advantage of co-rotating type vortex
generators is their downstream effectiveness resulting in more effective usage of the vortex
energy within the affected boundary layer. This type of vortex generator has a few special
advantages when used within S-duct inlet configurations, namely: (1) the induced vortices will
remain close to the wall resulting in a "cleaner" core flow, and (2) the induced vortices will
counteract the natural and often strong secondary flow which develops.

Counter-rotating, equal strength vortex generators have been used in a number of aircraft
inlet ducts, such as the F/A-18 and the center inlet duct on the production 727 aircraft. This type
of vortex generator is very effective in reducing flow separation if the vortex generators are
placed slightly upstream of the region of separation. The disadvantages of these types of
generators, as compared to co-rotating generators, are: (1) the induced vortices tend to lift off
the duct surface, thus reducing their effectiveness, (2) higher loss in inlet total pressure recovery,
and (3) higher total pressure distortion at the compressor face.

It was not until the confirmation test for the refanned JT3D engine on the 727 center duct
inlet in 1973 by Kaldschmidt, Syltebo, and Ting, Ref. 3, that an attempt was made to use vortex
generators to restructure the development of secondary flow in order to improve the engine face
distortion level. Thus, a very important shift in strategy on the use of vortex generators had
occurred. The perspective had moved from a local two-dimensional boundary layer approach
aimed at eliminating local flow separation to a global three-dimensional vortex-secondary flow
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interaction concept, where the design goal was now to control the development of three-
dimensional secondary flow itself, by introducing discrete sources of vorticity at selected locations
throughout the inlet duct.

In order to accomplish this new objective for internal flow control, the design strategy must
shift from an experimental based methodology to an approach based on analysis. This paper.
represents one in a series of studies on the design issues associated with inlet-engine
compatibility problems, and in particular, engine face distortion and its control. These studies
center on the development of CFD tools and techniques which look promising within an
analysis-design environment, and the application of these new analysis approaches to understand
and control inlet-engine distortion. The first paper in this series by Anderson (Ref. 4) deals with
the aerodynamic characteristics of vortex interaction within the F/A-18 inlet duct, where the
vortex interaction arises as a result of a vortex ingestion. Later studies will involve the effect of
vortex ingestion on the engine face flow field itself. In the second paper in this series, by
Anderson and Levy (Ref. 5), it was demonstrated that an installation of co-rotating vortex
generators could be constructed to tailor the development of secondary flow to reduce engine
face distortion. Of importance is the conclusion that there exists an optimum axial location for
the installation of co-rotating vortex generators, and within this configuration there exists a
maximum spacing of generators above which the engine face distortion -rapidly increases. This
study also showed that the vortex strength, generator scale, and secondary flow field structure
have a complicated and interrelated influence on the engine face distortion, over and above the
influence of the initial arrangement of generators. These are the only three-dimensional
calculations of inlets with vortex generators known to the authors.

ANALYSIS

With these computational tools in place the present paper attempts tc pose the design of
low distortion inlets through the use of vortex generators as a numerical optimization problem.
To be a valid optimization problem a quantitative measure of goodness must be defined.
Although inlet distortion is caused in the inlet, its effect is meaningful in the response of the
engine to the distorted airflow. Inlet distortion can reduce surge margin and limit aircraft
maneuverability. Aircraft and engine manufacturers have developed measures of inlet
distortions that characterize the inlet flow, although they must be recalibrated for each airframe,
engine and flight profile.

It is impractical to measure anything at the engine face when the engine is installed and
operating; consequently, the engine and inlet designers agreed upon an Aerodynamic Interface
Plane which is forward of the compressor face but sufficiently close to the engine face to have a
similar flow field. Current U.S. practice uses forty or forty-eight transducer probes arranged in
eight rakes with five or six rings. The radius of each ring is set such that all probes are at the
centroid of equal areas. All distortion descriptors, whether they quantify steady state or transient
distortion conditions, are always calculated relative to the standard rake located at the
Aerodynamic Interface Plane.

The most widespread quantitative distortion descriptor available in the literature, because
of its use in the earliest measurements on inlet ducts in the late 1950's, is simply:

DT = Ptmax - Ptmin] / Ptave (1)
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where Pta x is the maximum rake total pressure, Ptn; is the minimum rake total pressure, and
Ptave is the area weighted average rake total pressure. In experimental data reduction, it is
assumed that both the static pressure and temperature are constant and steady across the
Aerodynamic Interface Plane; thus both the velocity and Mach number can be considered.
functions only of total pressure and the distribution of this quantity is the only measurement that
needs to be made. This parameter is always useful to determine for comparison purposes and to
describe the 'general health' of inlet ducts irrespective of the type of power plant that may be
used.

The effect of circumferential distortion on compressor surge margin is essentially to drop
the maximum pressure ratio of a constant corrected speed line. One descriptor for
circumferential distortion is from Rolls Royce and is defined as

DCtheta = [Ptave - Ptmin] / qave (2)

where Ptave and qave are the average total and dynamic pressure at the engine face or
aerodynamic interface plane and Ptmin is the minimum total pressure in any section of extent
theta. Significant theta values can vary with engine design and commonly are 60, 90* and 120".
For bypass engines, a circumferential distortion descriptor DCtheta.GG ii often used, where GG
indicates that the index is taken over the area of the gas generator.

More advanced distortion descriptors, introduced in the late 1960's and 1970's, take into
account the Dt distortion of each ring of total pressure measurements. Thus, the radial distortion
Dtr is defined as

Dtr = C[Ptmax - Ptave) / Ptmaxl ring (3)

where Ptave is the average total pressure for a given ring radius and Ptmax is the maximum local
ring total pressure. The circumferential distortion Dttheta is defined as:

Dttheta = [[Ptave - Ptmin / Ptave) ring (4)

where Ptmin is the lowest total pressure in any theta segment, usually 60* or 180" of arc for a
given ring radius having an average ring total pressure Ptave.

Whatever distortion parameter is selected, there are a large number of design parameters
to be optimized. Figures 1, 2 and 3 define many of the geometric parameters which may vary
from vortex generator to vortex generator in a single inlet, although in this study all vortex
generators in each inlet were of the same size, shape and spacing. The effects of several
parameters on inlet distortion are now presented. Note in the following examples that the
parameters are highly coupled, i.e. the Hessian matrix is not well approximated as a diagonal
matrix.

Vortex Generator Design Parameters

The 727/JT8D-100 center inlet duct geometry was used for illustrative purposes in this
study. Other inlets, such as in the F-18 aircraft [4] can hve significantly different distortion

L j



423
Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences
OCIDES-TD. Editor G.S. Dulikravich. Washineon D.C.. October 21-25, 1991.

characteristics and different responses of inlet distortion to variations in vortex generation design
parameters. The computations were made at an inlet entrance Mach number of 0.6, and
Reynolds numbers that ranged from 4.Ox 106 to 16.Ox 106 based on hydraulic inlet diameter (Di),
and inflow conditions that correspond to a shear layer thickness 6S/D i = 0.005.

The.geometry of the co-rotating vortex generators used in this study, along with the
nomenclature used in positioning the individual blades are presented in Figs. 1, 2 and 3. The
important geometric design parameters include: (1) the vortex generator blade height (h/Ri), (2)
the blade chord length (c/Ri), and (3) the vane angle of attack (fv, ). For all the calculations
within this study, the .voi tex generator blade height (h/Ri) was set at 0".075, the ratio of generator
height to chord length (h/c) was fixed at 0.5, and the vane angle of attack (ft ) was set at 16.00.
Instead of the usual spacing parameter (d/Ri), i.e., the distance between adjacent blades, the
positioning of the vortex generator blades was described in terms of spacing angle (avg) and a
sector angle over which the blades were positioned (0 s).

Shown in Fig. 4 is the axial location of the vortex generator sector region (Xv~0 Ri) covered
in this study. These sector regions were located between XvgR i = 1.0 and XvR i -- 7.0, and cover
a sector angle (8s) up to 157.50 as measured counter-clockWise relative to an azimuthal angle of
1800 with respect to the vertical axis of the duct.

Installed Vortex Generator Performance Characteristics

The effect of Reynolds number on engine face peak 60* -sector circumferential pressure
ring distortion is presented in Fig. 5 for the baseline inlet duct, i.e., without vortex generators.
There is a significant increase in maximum circumferential pressure ring distortion, from 0.045 to
0.087, over the Reynolds number range from 16.Ox 106.

Presented in Fig. 6 is the influence of Reynolds number on engine face distortion for the
vortex generator installation composed of 9 generators located at an axial location Xvg = 5.0. For
this installation of vortex generators, the maximum 60* -sector circumferential pressure ring
distortion index remains reasonably level between the Reynolds numbers of 16.Ox 106 and 8x 106.
For Reynolds numbers less than 8.Ox 106 the flow at the engine face "breaks" down and the
distortion increases very rapidly. The systematic and continuous nature of the flow field
breakdown can be seen in the engine face total pressure recovery maps presented in Fig. 5.
Installed vortex generator performance, as measured by engine face circumferential distortion
descriptors, is sensitive to Reynolds number and thereby the generator scale, i.e., the ratio of
generator blade height to local boundary layer thickness. Installations of co-rotating vortex
generators work well in terms of minimizing engine face distortion within a limited range of
generator scales. This means that the design of vortex generator installation is a point design,
and all other conditions are off-design.

The relative engine face distortion levels at different flight conditions is important since
inlets must be designed to operate with low distortion over the flight envelop. Trades between
what is needed at one flight condition, such as takeoff, and what is needed at other conditions,
such as transonic maneuvering at low altitudes or cruise, must be made. Reynolds number, Mach
number, inlet mass flow and engine tolerance to distortion can all change from one operating
condition to another. The different shapes of curves in Figs. 4 and 5 represent different
relationships between distortion levels at key aircraft operating conditions.
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The relative engine face distortion at different flight conditions is important since inlets
must be designed to operate with sufficiently low distortion at all critical flight conditions.
Trade-offs between what is needed at one flight condition (e.g., take-off) and what is need at
other flight conditions (e.g. transonic maneuvering at low altitudes or high Mach number cruise
at high altitude) must be made. Reynolds number, Mach number, inlet mass flow and engine
tolerance to distortion can all change from one operating point to another. The different shapes
of curves in Figures 5 and 6 represent different relationships between distortion levels at key
aircraft operating conditions.

Figures 7 and 8 show the change in distortion with the number of vortex generators. Vortex
sector angle increases as the number of vortex generators is increased because of constant
spacing between generators causing a decrease in engine face distortion. The vortex generators
are at x/R = 3 in Figure 7 and at x/R = 5 in Figure 8 where the distortion levels are lower. The
effect of axial location is shown in Figure 9 showing an optimum in this case at x/R between 5 and
6. The effect of spacing between vortex generators is shown in Figure 10 for a 127.5* sector
angle at x/R = 5 indicates that generating strong vorticity at the correct location can significantly
reduce distortion. Parameters such as vortex generator height, length and angle of attack have
not yet been systematically studied in other than simple model problems.

NUMERICAL OPTIMIZATION PROBLEM

Design of complex systems by numerical optimization techniques is becoming an accepted,
and in some cases even a standard approach. Vortex generator design for aircraft inlets can be
cast in a form to bring the large body of optimization tools to bear on this problem. Comments
will now be made on the choice of design variables, the performance parameters and
requirements for a numerical optimization method.

The design variables include the geometric variables of each vortex generator, i.e., length,
height, and geometric angle of attack. They also include the relationship between vortex
generators such as their circumferential separation, a, and their axial location, x. These variables
are continuous. However, the number of vortex generators used is also a design variable which
must take integer values. In addition, the geometric angle of attack of a particular vortex
generator has local optima at both positive and negative values. These correspond to the
co-rotating and counter-rotating cases described above.

Selection of a performance parameter is a particularly difficult task for three reasons. First,
the required distortion level can be different at each important flight condition. Second,
distortions worse than the requirement are unacceptable whereas distortion levels better than the
requirement are of limited value. Third, use of vortex generators can cause loss of total pressure
which implies loss of thrust.

At each flight condition, i, a performance parameters could have the form:

Pi = fp[D - Di) * [APi gi mfj (5)
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where Di is the distortion at the flight condition, Di is the allowed distortion, p is either a penalty
function or a barrier function. As a penalty function it is adverse when the argument is negative
and constant or only moderately improving when the argument is positive. As a barrier function
it gets increasingly adverse as the argument approaches zero. APiO is the pressure loss in the
inlet including the effect of vortex generators, mif is the rated fuel burned at this flight condition
and gi is the gross-to-net thrust ratio. This performance parameter sums the contribution of
performance parameters at several flight conditions. The contribution from each flight condition
is weighted by the amount of fuel burned in that segment of the flight by the second term in (5).
Consequently this term heavily weights the design to good cruise performance. The first term in
(5) requires that an acceptable level of distortion be achieved at all flight conditions. The barrier
or penalty function must be designed to prohibit unacceptable distortion levels since this can
result in engine damage or worse. The weighted summation of performance at each flight
condition is analogous to techniques presently used for component design in aircraft systems.
Using the discrete penalty function:

f6 (a) 1 a < 0 (6)

in Equation (5) results in a statement of the engineering problem that nay preclude the use of
differential methods.

Evaluation of the performance parameter for each set of design variables requires solution
to a set of four partial differential equations at 250,000 to 500,000 node points. Each evaluation
uses 6 to 12 minutes of CPU time on a Cray X-MP or Y-MP. At commercial Cray computer cost
of $200 per hour, performance parameter evaluations are not excessively expensive compared to
multi-million dollar model tests in a wind tunnel. Evaluation on an engineering workstation at
1/10 the Cray speed and a purchase price on the order of $15,000 allows a trade of evaluation cost
versus time.

Two computational strategies are suggested. The first is based on gradient methods and
uses the barrier function. First order "steepest descent" methods are not expected to be useful
because of the strong interaction among the variables. In particular, consider terms of the form

a2p (7)
axiaXj

where xi and x. are design variables and P is the performance parameter. Successful solution by
first order gradient techniques can be inhibited by large values of (7) for i ,- j compared to terms
where i = j. In these cases higher order methods are required. A full second order method
requires many evaluations of the performance parameter, which can be costly. Quasi-Newton
techniques approximate the matrix terms, Eq. (7), by a positive definite matrix. The
approximation improves with successive 1-D searches.

Since the number of vortex generators is not a continuous variable and since co-rotating
and counter-rotating vortex generators form two classes of solutions, a series of optimization
problems need to be solved. The most favorable of the separate cases would be selected as the
favored design.
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Rather than solve the entire problem de novo, aspects of a design could be improved by
numerical optimization strategies. For example, vortex generator height, length and angle of
attack could be held constant. Then for a predetermined number of co-rotating vortex
generators, their location and spacing could be optimized using traditional optimization
techniques.

A second strategy is discrete and uses the discrete penalty function, Eq. (6). The resulting
optimization problem is a mixed discrete-continuous design variable problem with a
discontinuous performance parameter. Discrete optimization techniques, such as simulated
annealing, may be adapted to this hybrid problem. Such techniques can require a large number
of evaluations of the performance parameter, so careful strategies must be adopted. Such
strategies are areas for further research.

CONCLUSIONS

Vortex generator design for aircraft inlets has played an important role in solving inlet
distortion problems in the last 20 years. Present design procedures are based on expensive and
therefore limited model tests. With the ability to compute inlet flowg with vortex generators
comes the ability to apply numerical optimization techniques to the design problem, at least in a
limited sense.

A performance parameter is suggested to account for both inlet distortion and total
pressure loss at a series of design flight conditions. The resulting optimization problem is
difficult since some of the design parameters take on integer values. If numerical procedures
could be used to reduce development test programs to a small set of verification tests, numerical
optimization could have a significant impact on both cost and elapsed time to design new aircraft.
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Figure (7) - Effect of vortex generator sector angle (0s) on the maximum
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1 ABSTRACT

The viscous airfoil design/analysis code XFOIL was extended to allow optimization using con-
formal mapping coefficients as design variables. The optimization technique employed was the

Steepest Descent method applied to a Penalty Function. The gradients of the aerodynamic vari-
ables with respect to the design variables were cheaply calculated as by-products of XFOIL's

integral boundary layer Newton solver. The speed of the optimization process was further in-
creased by updating the Newton system boundary layer variables after each optimization step
using the available gradient information. Two examples are presented.

2 INTRODUCTION

Airfoil design can be broken into two schools of thought. The more recent of the two involves
the use of inverse design methods whereby the airfoil geometry is generated to match a specified

pressure distribution. The drawback is in determining what makes a good pressure distribution.
Many examples of inverse design techniques exist in the literature (1, 2, 3J. The older design
practice uses trial and error geometry guessing. Each new geometry is evaluated using an airfoil
analysis method and is compared to previous designs. This is continued until an acceptable

design is iteratively converged upon. This is a time consuming process, but, it does lend itself to

numerical optimization techniques. Many methods have been tried for inviscid airfoils, several
examples of which are given by Vanderplaats [4, 5J. Optimization can be computationally

intensive, so to be a viable design tool the optimization method employed must be efficient.
Optimization 'efficiency can be increased by the use of gradient information but calculation

of this infcrmation adds to the computational burden. One method of obtaining the gradient
information is to perform finite difference calculations, however, this can be extremely expensive.

The object of the present research was to modify an existing 2D airfoil design/analysis code
to calculate gradient information during the analysis procedure, with a minimum of excess

work, such that this information can be used in an optimization process. The optimizer written
for the design code was simple and robust, but not necessarily the most efficient since the
emphasis was on developing the ingredients for the optimization: design variables and gradient

information. The code used was Drela's XFOIL code (6]. XFOIL has several design routines,
and includes both viscous and inviscid analysis routines. Principles from both the design and
viscous analysis routines were combined to allow viscous optimizations.

The outline for the remainder of this paper is to first present the governing equations,
the choice of design variables, and how these variables allow efficient gradient calculations.
These same gradients can also be used to further speed the optimization process which will be

L presented next. Two design examples will be given at the end. j
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3 ANALYSIS

3.1 Governing Equations

The optimization scheme utilized in XFOIL was an iterative 'Steepest Descent'-type. In order to

use this technique the Objective Function and constraints were combined into a Penalty Func-

tion such that the constrained airfoil optimization problem is converted into an unconstrained

problem. A constrained airfoil optimization problem can be stated in Penalty Function form as

i M

Minimize: P(x).= F(x) + E Kj (gj(x)) 2
'  (1)

where,

gj(x)>0 for j= 1,m (2)

are the constraints that the airfoil is subject to, and

Ki={ 0 gj(x) _0 (3)
K gj(x) < 0

are the switches that turn the constraints on and off. The cost parameter, K, is a large positive

quantity used to control the influence of the constraint on the optimization process (5]. The

Objective Function, F(x), is the function that the optimizer will drive to the lowest possible
value, subject to the stated constraints, using the design variables x. For airfoil optimization

the Objective Function could be simply the drag coefficient or a combination of several airfoil

characteristics such as the negative of the range parameter, -MCL/Cd-.

3.2 Design Variables

The unit circle in the C-plane can be mapped to an airfoil in the z-plane by the transformation

(3]

(, exp { (A, + iB n n = 0,1,2,... (4)

where, 7rete is the trailing edge angle. The design variables employed in XFOIL's optimizer are

a finite number of the real and imaginary parts of the complex coefficients of Eq. 4:

x= {A 2, A 3,'". ANA, B 2, B 3 ,... BN,}T. (5)

Using the above notation, there are a total of (NA - 2) + (NB - 2) design variables. Each design
variable corresponds to a single design mode such that the optimal airfoil is constructed by a

sum of these design modes. A particular convenience of these design variables is that the An's

control the thickness distribution of the airfoil and the B,'s the camber distribution. Due to

this distinction the A,'s and B,'s will be referred to, respectively, as the symmetric modes and

the anti-symmetric modes. The first 3 symmetric and anti.symmetric design modes are shown

in Fig. 1. The solid lines for the symmetric modes indicate the airfoil surface for one value of

A,. The dashed lines show how the surface (i.e. the thickness) changes as another value of

A, is used. For the anti-symmetric modes, the lines are not the airfoil surface, but the camber

lines. The first usable design modes are A2 and B 2 since A0 , A,, Bo, and B1 are constrained by

L Ligthill's constraints [2] and therefore are not available as design variables. j
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F The A, and B, coefficients completely control the airfoil geometry with the exception of
the trailing edge angle and gap. For a typical airfoil only the first twenty or so Ca's are required
to define the airfoil. The value of the design variables for a DAE11 airfoil are plotted in Fig. 2
as an indication of their magnitudes for a typical airfoil. The higher frequency modes quickly
become unimportant. In both cases, only approximately the first 15 modes are important.

The DAEll geometry is shown in Fig. 3 for reference. The higher modes, however, become

important for airfoils with small leading edge radii.

3.3 Aerodynamic Quantities

For optimization efficiency it is imperative that gradient information be calculated and cal-
culated cheaply. The gradient information will also prove useful in making XFOIL's viscous
analysis procedure run faster as will be shown shortly.

In its unmodified configuration XFOIL solves a viscous flow around an airfoil by constructing
3 linearized boundary layer (BL) equations at each airfoil and wake node (N airfoil nodes, N,
wake nodes) and solving the resulting system using a Newton solver. For a viscous airfoil

analysis all aerodynamic quantities of interest are functions of the five BL variables: C,., 0,
m - u 6 ", u,, and P. In this text C,. will represent two quantities: in laninar regions it will be
the amplitude of the most-amplified ToUmien-Schlichting wave, and in turbulent regions it will
be the maximum shear coefficient. The Newton system only solves for three of these variables,

C,, 0, and m, since ue and 6 are related to the first three variables. For more details of XFOIL,
see Drela (6J.

To calculate the required BL variable gradients, consider the Newton System used in XFOIL

(J] {6} = - {R}. (6)

This equation is a block matrix equation where the ith-row, jth-column block of the Jacobian

Matrix is

, , (7)

8h Oh. Oh-

The corresponding ith-row block of the vectors are

, . (8)

n6mi hi

Many of the terms in the Jacobian Mat-ix are zero, but the detailed structure is not important
here.

Equation (6) is constructed using 3 BL equations at each node all with the functional form

Ri = Ri(C,~ t , Cr, Oi-1, Oi, ml, i ,..., N+Nw), (9)

where, Ri can be f,, gi, or hi and the subscripts indicate which node is being considered. The
edge velocity, u,, is composed of an inviscid and a viscous source contribution,

L
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F1
-Ue4 = qk +EdkjmI, (10)

j

where, the inviscid part qk depends on the airfoil geometry and hence A,, and B,. The mass
defect, m, therefore also depends on A,, and B,,, and so does the viscous residual Ri in Eq. (9).
Consequently, a new Newton system is obtained in the form

[J IA]J{ } = -{fR}. (11)

The ith-row block of the Jacobian addition, [A], is

A,8- (12)

Oh Ah Oh- 8h' Oh- Oh-

The added vector term contains the changes in the design variables

{A} = { AA 2, AA 3 , ... AANA, AB 2, AB 3, ... ABN ', (13)

where, A( ) implies a change in the design variables between the current optimization step
and the next optimization step. The modified Jacobian matrix, [J I A], is no longer square,
but during normal viscous calculations the geometry is fixed and thus the AA, and ABn's are
known (i.e. they are zero). Therefore, rewriting Eq. (11) with all knowns on the right hand
side and then pre-multiplying both sides by [J]-' the system reduces to

{6} = - [S] - {R} + (D] {A}, (14)

where,

[D] = -[J]- [A]. (15)

The viscous -,lution is obtained when the residual, {R}, is zero. Thus, at convergence
Eq. (14) will have the same form as a first order Taylor series expansion of the 3 BL equations
in terms of the design variables. For example, the Taylor expansion for C,, 0, and m at the ith

node is

NA Ni
+ (16)

n=2 n=2
6rai am Iam.

The Taylor coefficients are the BL variable derivatives being sought and after close examination
it can be seen that they are the columns of [DJ. For example, the ith-row block of [D] is

L j



437

Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences

(ICIDES-TIID. Editor: G.S. Dulikravich. Washington D.C.. October '23.25. 1991.r 1
49c. aC, ac, ac,. acr. ac, -..... j
89'j a98' 8 ae. a#(17

N A

The elements of this matrix are found not by carrying out the matrix multiplication as
indicated in Eq. (15) but by solving the original Newton system with the columns of [A] added

as extra right hand sides. Since a direct matrix solver is used, very little extra work is needed
to calculate the required sensitivities. In addition, the extra right hand sides only have to be

included after convergence of the system, not every time the system is solved.
The above derivation presents a scheme to compute the BL variable gradients if the gradients

of the BL equations, Eqs. (9), are known (i.e. if the terms of (A] are known). The terms in [A]
are found by use of the chain rule and are included here without derivation

aRi ( I ( i- + (,i (_ qi (18)&An =  Oqil OA, , o) +  OA,,

where,

OR - OR - ORi7 (19)q-_I = uei-1 0_ 1 u2 ,(19

is found using Eq. (10) and the definition of the mass defect, rn = ue6° . Similarly for the B,
derivatives. In the above four equations Ri can be fi, gi, or hi. At node i the derivatives depend
only on the information at that node and the upstream node i - 1. All the terms in Eq. (19)

are already available once XFOIL constructs the Newton system. Further details of the above
equations can be found in the author's Master's Thesis [7].

The only remaining unknown sensitivities in Eq. (18) are the derivatives of q. These can be
calculated analytically from the expression for q obtained after the complex potential is mapped

from the circle-plane to the airfoil-plane. At any point, C,, in the circle-plane, the physical speed
is

00

q =exp JR n ( - D" e't+ e- (, + iB.) (20)

The derivatives of this equation are remarkably easy and cheap to compute:

=q -qR (n~ (21)

= +qa ,) (22)

3.4 Geometry Gradient

Now, all aerodynamic variables that depend on the flow solution have been differentiated, and

only one further piece of gradient information is necessary; the geometry sensitivity. This
can be found analytically using the integrated form of Eq. (4), however, in practice there is a

L complication. The difficulty arises due to the need for the geometry gradient for the unit chordj
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airfoil. Equation (4), when integrated, does not produce a unit chord airfoil and therefore its
gradient will not be for a unit chord. The geometry is subsequently normalized, however this is
not completely satisfactory for the gradient due to movement of the leading edge. This is not a
concern for syrnmetric airfoils and is a relatively small effect for cambered airfoils. Therefore,
the movement of the leading edge point was ignored in calculations for the gradient of z.

3.5 Updating BL Variables

The Newton system of XFOIL uses the BL variables of the previous solution as the starting
point of the new solution, therefore, the speed of the optimization can be increased by simply
approximating the BL variables of the new airfoil. This can be done by adding the following
perturbations to the BL variables at the old optimization step at those nodes not affected by
the transition point:

{6} = (D) {A}. (23)

The AA,'s and AB,'s in the {A} vector of Eq. (23) are the changes in the design variables
between the current and new optimization steps, and are calculated from Steepest Descent
Equation. The remaining two perturbations, 6 ue and 66", can be found using

NA Ou A N i Out

bue = EZ -jAA +E IE,(4
n=2 n=2

and
NA Nit ON(

66' = -AAn + ABn (25)
n=2 n=2

For a reasonable optimization step size this linear extrapolation will give a good approximation
to the new BL variables. Thus, the Newton system constructed during the analysis of the new
design point will converge faster than if no updating were done since it will have a better initial
condition.

Movement of the upper and lower surface transition points from one panel to another will
cause such severe changes in the BL variables that this linear extrapolation will not work near
the transition points. If not considered separately, the poor transition point approximations
would be enough to negate the gains in efficiency promised by the updating. The new location
of the transition points is approximated and then the BL variables at each panel the transition
points have passed over are 'fudged' . This 'fudging' process will only affect the rate at which
the Newton system converges, it will not affect the converged solution. For C,, 0, and ue the
approximation across the transition point shift is a linear extrapolation from the previous two
approximated points, i.e.

Cr - 2C -_j - Cr;_ 2, (26)

where i is a BL node the transition point has passed over. The equations for 0 and u, are similar.
For the remaining two BL variables, m and 6', it was found to be a better approximation is
to, set mi = mi-I and 6 = 6 _I . All that remains to be able to use these transition point
approximations is to determine how far the transition point has shifted. This is done using

bzrn= .- -Cl + 60 + - 66' + L bUe. (7= +-- 6 (27)
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F All the derivative terms in the above are already calculated in XFOIL to construct the Newton
system, so the derivation is complete.

The convergence histories for a simple test case with and without updating the BL variables
are shown in Fig. 4. The number of iterations for the Newton solver to convergence is plotted
versus the optimization step number. The amount of time saved is not extensive, but the low
cost of updating makes it worthwhile. As the optimization continues the savings will be smaller
since the step sizes are small.

4 RESULTS

the two examples presented in this section were run on a DecStation 5000. These examples
were chosen to show the various properties of XFOIL's optimizer, they are not designed to be
realistic design problems.

5 Example 1 - Cd minimization, M = 0, a = 00

The first test case was designed as a simple example to build faith in the optimization code. A
NACA 0015 airfoil was used as the seed airfoil with Cd used as the Objective Function. The
only constraint was to keep the angle of attack covstant at 0)*. The Reynolds Number based
on the chord was 106. The two design variables used were A2 and A3. Using only two design
variables will allow a pictorial representation of the optimization path to be constructed.

Figure 5 portrays the optimization space for this test case. The contours are of constant
Cd and a local minimum is located in the upper left corner. The seed airfoil is located out
of the picture in the lower right corner and the path taken by the optimizer is marked by
the crosses. Convergence took 24 iterations and approximately 12 minutes. Figure 5 clearly
shows the larger step sizes in the first five steps, i.e. in the region of large slope. The step
directions are perpendicular to the contours, as they should be, where the gradients are large.
As the optimum is neared the step directions start to parallel the contours. This is due to
the approximations made in the gradient calculations. This is not a detriment since the exact
mathematical optimum is relatively unimportant.

From Fig. 6 it is obvious that the largest drag reductions are produced in the first few
iterations. This is a recurrent observation. Figure 7 compares the optimal airfoil to the seed
airfoil. Because only two design modes were utilized, the possible change in the airfoil is small.
However, large changes were made in Cd by modifying the airfoil such that the transition points
were moved further aft.

5.1 Example 2 - Cd minimization, M = 0, C1 = 0.5

The second example optimized the Cd of an airfoil using 7 symmetric and 5 anti-symmetric
design modes. The seed airfoil was an NACA 3412 and was constrained for a constant lift
coefficient and a minimum allowed thickness at 95% of the chord. This constraint was necessary
to prevent negative thickness airfoils. The cost parameter and the Reynolds number were
K = 100 and Re = 5 x 106.

This example was stopped after a viscous Newton system was unconverged at the 38
th

optimization iteration. The Penalty Function is shown in Fig. 8. The drag reduction slows
slightly after 20 iterations but is definitely still headed down when the optimizer was stopped.
The optimizer was restarted using the last airfoil generated before the Newton system failed as

L
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F the new seed airfoil. Optimization convergence was achieved after an additional 15 iterations. 1
The optimization required approximately 30 minutes. The drag was further lowered from
Cd = 0.00389 to Cd = 0.00380. The reason for the unconverged Newton system is unexplained
but it does not invalidate the results of the optimizer.

The pressure plots of the seed and optimized airfoils are shown in Figs. 9 and 10, respectively.
The dashed lines in the Cp curves are the inviscid solutions and the solid lines the viscous
solutions. The waviness apparent in the C, curve of the optimized airfoil is due to the fact that
higher design modes were not used during the optimization.

Modification of an airfoil design code to use mapping coefficients as the design variables was
successfully implemented. Gradient information was calculated within the analysis portion of
the code with a minimum of extra effort. The gradient information was shown to be accurate

When used in the proper way, the XFOIL optimizer can become a valuable design tool
The optimizer should not be used as a 'black box' to create perfect airfoils but as a designer's
tool that will free the designer to become more creative and productive by reducing the time
spent in iterative design modifications. The 'optimal' airfoils obtained should be used to give
the designer ideas for what characteristics the real airfoil should have.

There were also several areas in which the XFOIL optimizer did not live up to expectations.
The first is the limited number of design variables that could be utilized. It was found that the
optimizer should be restricted to NA _< 12 and NB 5 12 because the higher mode derivatives
became inaccurate. This does not allow the generation of completely general airfoils with the
chosen design variables. This is a disappointment, however the cheap gradient calculations
made possible by using the mapping coefficients as design variables make up for this deficiency.
Another disappointment was the temperamental nature of XFOIL's Viscous Newton solver.
This does not destroy the promise of the optimizer it only enforces that some care needs to be
exercised when using the optimizer.

Another area for future research is the development of design variables that can also control
the trailing edge angle and gap, and if possible, be completely general.
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7 NOMENCLATURE

F Objective function
x General design variables
g3 Constraints
m Number of constraints
A,. XFOIL thickness design variables (symmetric)
B,. XFOIL camber design variables (anti-symmetric)
NA Last symmetric design mode used in optimization
NB Last anti-symmetric design mode used in optimization

1J1 Newton system Jacobian matrix
(A] Addition to Jacobian matrix
{ 6} Newton system unknown vector

{A} Addition to unknown vectorL
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F (RI Residual vector

[D] Aerodynamic variables derivative matrix
C, Coefficient of lift
Cd Coefficient of drag

M Mach number
Re Reynolds number based on airfoil chord
N Number of airfoil nodes
N. Number of wake nodes

fi, gi, hi Node i boundary layer equations
C, 0, m, 4y, u., 6 Boundary layer variables
Xtran Transition point location
Ete Trailing edge angle parameter
a Angle of attack
q Inviscid surface speed

= reiW  !Complex circle-plane coordinate
A Difference operator
6( ) Newton system perturbation
R( ) Real part of the quantity in the parenthesis

Z3( ) Imaginary part of the quantity in the parenthesis
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DESIGN OPTIMIZATION OF TRANSONIC AIRFOILS

C.-Y. Joh, B. Grossman, and R.T. Haftka

Department of Aerospace and Ocean Engineering
Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

ABSTRACT

Numerical optimization procedures have been considered for the design of airfoils in transonic
flow based on the transonic small-disturbance (TSD) and Euler equations. A sequential approxi-
mation optimization technique was implemented with an accurate approximation of the wave drag
based on the Nixon's coordinate straining approach. A modification of the Euler surface boundary
conditions was implemented in order to efficiently compute design sensitivities without remeshing
the grid. Two effective design procedures producing converged designs in approximately 10 global
iterations were developed: interchanging the role of the objective function and constraint and the
direct lift maximization with move limits which were fixed absolute values of the design variables.

INTRODUCTION
Current aerodynamic design methods can be broadly categorized as inverse rr. ithods, e.g., Volpe

and Melnik', and numerical optimization methods, e.g., Vanderplaats and Hicks 2 . In general, in-
verse methods have been widely used as design tools primarily due to their computational efficiency.
They do have a weakness associated with the closure problem, which generally requires considerable
design experience. Also inverse methods, initially developed for potential flows, have Deen success-
fully applied to rotational flows based on the Euler equations, e.g., Giles, Drela and Thompkins 3

and the Navier-Stokes equations, e.g., Malone, Narramore and Sankar4 .
Numerc 1 optimization methods have not been widely used in practical airfoil designs primarily

due to the large amounts of computational resources needed. Nevertheless, the methods will con-
tinue to be developed since they have many advantages such as automated design capability, ability
to handle multi-point design and varieties of constraints along with a capability of inclusion into
multi-disciplinary design of complete vehicles. A major reason for the large computational effort of
numerical optimization methods is the very large number of transonic analyses needed to develop
converged designs. Some improvements ' the efficiency of numerical optimization methods have
been obtained through the implemer'.ation of the shape functions, by Vanderplaats and Hicks 2 and
Aldala, Davis, and Mason 5 , and through the use of efficient optimization procedures, Vanderplaats 6 ,
Joh, Grossman and Haftka7 and Jjhs .

The motivation for the present work stems from plans to incorporate transonic airfoil designs
within an Integrated aerodynanwic/structural design of an aircraft wing, e.g., Grossman et al.9 .
Thus, our objective is to develop °fficient numerical optimization procedures for the design of two-
dimensional airfoils at transonic slpeeds, usir 6 as few complete transonic analyses as possible.

A preliminary study for this effort is reported in Ref, 7, where some special treatments were
developed for design optimization based upon the transonic small-disturbance (TSD) equations. In
this paper, we will amplify and improve these ideas and examine in detail the applicability of the
methods to the more accurate Euler equation analysis.

DESIGN FORMULATION

Design Problem
The design problem considered can be stated as:

maxinize Ci(X)
such that Cd(g) _ Ca,, (1)

A(g) > Amtn,

where X is the vector of design parameters 9 = (XI, X2 , ... , XN)T specifying the airfoil geometry.
Cd is the drag coefficient due to wave drag, Cd, is the prescribed upper limit on wave drag, A is
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ANALYTICAL FORMULATION

TSD Analysis
The first approach taken is based on a TSD formulation. This approach is based on an asymp-

totic expansion of the perturbation potential in the limits of airfoil thickness (t/c) --+ 0 and free-
stream Mach number M, -- 1, e.g., Ref. 12. The governing equation may be written as

(1_ M.20.2 + (y+ = 0, (3)

with the surface boundary condition on the airfoil surface, y Y(x) expanded to be

(Xy -)= , 0 < X/c < 1. (4)
Ty~ dY x4

It may be noted that the governing equation retains the important non-linear effects of transonic
flows but does not include the effects of entropy change across shock waves. Also, since the airfoil
surface boundary condition is applied along the axis and not on the actual surface of the airfoil, the
calculation can be performed on a simple Cartesian grid. This is useful in the design problem, since
we can efficiently utilize a fixed grid even with changing airfoil geometries. The specific analysis
code used for our TSD calculations is TSFOIL described in Ref. 13.

Euler Analysis
In order to evaluate whether the design procedures developed using the approximate TSD anal-

ysis are valid for more accurate flow field methods, we have investigated the airfoil design with the
Euler equations. We utilize the complete set of governing equations for an inviscid, non-heat con-
ducting, adiabatic flow with negligible body forces. The equations may be written in conservation-law
form in Cartesian coordinates as OQ +OF + O(5

01 Ox Op y
where

pu F= Pu 2 + P PG=

Q= F= (( , () (( 2P (6)
PVpuv P~vp

peo peo + p)u (peo+p)vI

with velocity components u, v. density p, total energy per unit mass eo = e + (u2 + v2 )/2, with e being
the internal energy per unit mass and pressure p. which for a perfect gas may be expressed as
p = (-y - 1)[peo - p(u2 + v2)/2]. The surface boundary conditions for the Euler equations, representing
no flow through the solid surface may be expressed as

v(x, Y) = Y'(X)u(x, Y), 0 < X/c < 1, (7)

where a prime denotes differentiation with respect to x. Thus we see that the boundary conditions
must be applied on the actual airfoil geometry, requiring a new mesh to be generated at each
stage of the design process. We partially alleviate the computational burden of re-creating the grid
for each geometry by assuming that design changes proceed slowly, and for a specified number
of cycles consider the grid to be fixed to a baseline airfoil geometry. Then the surface boundary
condition must be altered to allow a small amount of mass transpiration through the surface to
approximately account for the changing geometry. This procedure fits in well with the sequential
approximate optimization algorithm used in the design process, which imposes move limits on the
design. For each optimization cycle a baseline geometry will define the grid and the grid will be kept
fixed throughout the approximate optimization cycle. This greatly reduces the computational effort
for the Euler designs.

Let the subscript b refer to the body surface of the new airfoil and the subscript bo refer to the
body surface of the baseline airfoil. The exact surface boundary condition on the new airfoil surface
is the vanishing of the normal velocity Vb. fib = 0 or, as in Eq. (7)

Vb = YUb . (8)
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the airfoil cross-sectional area, non-dimensionalized by c2, with c the airfoil chord and Am,, is the
minimum required area. The design is performed at a free-stream Mach number of M, = 0.75 and
zero angle of attack, a = 0.

This type of problem has been solved first by Vanderplaats and Hicks 2 with a full potential
code, requiring 70 exact analyses. In Ref. 6, the same problem required 44 exact analyses with a
sequential optimization technique and data base approach where all the previous design information
is stored and reused for constructing higher-order approximations.

Here, we will examine the effects of utilizing two different codes, one a more approximate tran-
sonic small-disturbance (TSD) analysis and the second, a more exact inviscid Euler analysis. How-
ever, due to the different approximations in the two analyses, particularly the neglect of entropy
jumps across the shock waves, the wave drag values are found to be different, with the TSD result
at a lower level. In order to develop somewhat similar designs between the Euler and TSD methods
it was found necessary to utilize a larger value of Cd, in Eq. (1) for the Euler designs.

Shape functions and Design Variables

We have chosen to design the airfoil using shape functions following the successful implemen-
tation of Vanderplaats and Hicks2 ;

N+2

Y X Y (2)

where Y = y/c with y being the airfoil ordinate and c the airfoil chord length. The specified
shape functions Y, are functions of the non-dimensional abscissa x/c and the parameters X, are
the design variables. For the shape functions here, we selected four existing airfoils (N = 4),
namely, NACA 2412, NACA 64, - 412, NACA 652 - 415 and NACA 64 2A215. There are two additional
shape functions for imposing the boundary conditions at the trailing edge of the airfoil. These are
YN+l = +x/c on the upper surface and zero on the lower surface, and YNv+ 2 = -x/c on the lower sur-
face and zero on the upper surface. Usually with TSD analyses an open trailing edge is considered;
here we specify this thickness to be .0025c. For Euler analyses a closed trailing edge is utilized.
This fixes the values of the coefficients XN+1 and XN+2 in terms of X.,..., XN.

Approximate Optimization

When a design optimization is coupled with expensive numerical analysis code, most of the cost
of the optimization is associated with the exact analyses and sensitivity calculations. Even with
the most efficient transonic flow analysis code, the cost of the design process may be prohibitive if
the analysis code and an optimization algorithm are linked together directly, so that full analyses
are made for all the function evaluations during the design process. Instead we utilize a sequential
approximate optimization algorithm'0 . This approach replaces the original objective function and
constraints with approximations based upon nominal values and derivatives at an initial point. Ad-
ditionally, move limits are used to prevent the design from moving outside the bound of validity of
the approximations. Each approximate optimization problem is solved until an optimum is found,
and then a new approximation is constructed there, and the design optimization process is repeated
until convergence is achieved. An approximate optimization is typically referred to as an optimiza-
tion cycle, and this is also the terminology used here. A key part of implementing a sequential
approximation algorithm involves the approximation of the objective function and constraints. We
have found that these approximations play a crucial role in the design process. The procedures that
we have developed for approximating the lift and drag appear in detail later in this paper.

The specific optimizer used for our study is the general purpose optimization program NEW-
SUMT -A which is based on a quadratic extended interior penalty function and Newton method for
unconstrained minimization. The program provides the user with several approximation-switching
and move limit strategies.

L i
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Now we utilize the~grId system Whichiwas generated for the baseline, airfoil to analyze the flow 6ver
-the new airfoil. Thus It is necessary-to evaluate the newnormaland'tangentUla velocities on the
baseline airfoil surface Yo. (The normal velocity on the baseline airfoil Vbo . n, will not be zero). This
can be achieved by expanding the Cartesian velocity components at the baseline airfoil surface in
terms of the coordinates of the new airfoil surface as

Vbo = Vb + Y ) + = Vb + O(AY), (9.a)
Vb0~V~)b (YYO+.

Ubo = Ub + ( au')b (Y YO) +... =Ub + O(AY), (9.b)

where AY = Y - Yo. Thus using the boundary condition (8) we have Vbo = UbY' + O(AY) and
Ubo = Ub + O(AY). We can write these in terms of normal and tangential velocity components to the
baseline geometry as

Vo Vbo - UboY (10)

vbb - vbo Y (11)

Using Eqs. (8)-(1 1), we can write an expression for V.4, in terms of Vto which takes into account
the vanishing of the normal velocity at the new airfoil surface, V,. = 0, as

VniVO= 12't° (Y' - Y ), (12)V"°=1 + Y'YOI

where terms of O(AY) have been neglected.
The boundary conditions for the Euler calculation may be evaluated by extrapolating from the

field points to the surface y = Yo values of pbo, Pbo and ubo and vbo. The tangential velocity l4o is
computed from Eq. (11) and the normal velocity Vnb° from Eq. (12). Values of the total energy are
computed from

(PeO)bo = I 'Y_ l + °(2 V-1)] . (13)

The specific analysis code used for our Euler calculations is FLOMG which is based on Jameson's
time-stepping 4 and multigrid algorithms' 5 . Although the code was developed by Swanson and
Turke116 for solving the Navier-Stokes equations, we will utilize it only in the inviscid, Euler solver
mode.

LIFT AND DRAG APPROXIMATIONS

We first considered simple linear approximations for the lift and wave drag, as:

4f fo +E 19f (XI - XI°), (14)

1=1

where f is either the lift or the wave drag and fo is evaluated with the initial design parameters
X,..., X° . The sensitivity derivatives, Of/OX, are evaluated using one-sided finite-difference ex-
pressions. The effectiveness of the lift approximation is indicated in Tables la and lb for both TSD
and Euler analysis methods. We see that when the design variables are changed by as much as 2%,
the linear approximation of the lift coefficient remains within a 2% accuracy, compared to the exact
analysis. for the TSD solutions and to within 0.5% for the Euler solutions. However, this situation
is not repeated for the drag approximation. As seen in Tables la and lb the linear approximation
for the wave drag does not correlate closely with the exact results, with errors of 25% for the TSD
solutions and 15% for the Euler solutions, when the design variables change by 2%. This result
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was not unexpected since transonic flows are very nonlinear and shock-wave movement must play
an Important role in the wave-drag approximation.

In order to better approximate the wave drag, we considered the method of strained coordinates
for perturbations of transonic flows with shock waves, introduced by Nixon17 . This method has
been applied for airfoil approximations by Stahara' 8. In this method, the perturbations are made In
a strained coordinated system where the shock remains fixed. Coordinate straining uses the axial
position of the shock wave on the airfoil, x and the height of the tip of the shock wave above the
airfoil, yt. When x, changes by Ax, and yt changes by Ayt, the coordinates (x, y) of each point in
the flow field are changed by Ax and Ay given by

Ax = s(x) Ax,, Ay =- Ay. (15a, b)
Vt

For the TSD analysis. following Ref. 17, the straining function s(x) is taken as

s(X) = x(c - X) (16)
x,(c - X,)

which is valid for 0 < x < c and is equal to zero otherwise.
For the TSD analysis, the strained coordinates are used first in the process of calculating finite-

difference sensitivity derivatives according to the following steps:
1. The l-th design variable Is perturbed by AX, and the corresponding Ax, and Ayt are calcu-

lated from a new solution of the flow field and used to approximate the shock sensitivities

1x, _ Ax, OYt Ay (1 7a, b)

aX, - YX,,' aXi -aAX, *

2. The flow-field sensitivities are approximated, using Ax and Ay from Eqs. (15a,b), in terms
of the axial velocity for the nominal design u° and the axial velocity for the perturbed flow
field u as

A___-(x,y)= 1x

The strained coordinates are used again in approximating the flow at a new design point f( as
follows: First the new shock location and shock-tip position are calculated by a linear approximation

AX,= X. ayt Mx- x°1)  (19a, b)

4=1 ,. x, a,
Values of Ax and Ay are calculated from Eqs. (15a.b) and then the axial velocity u Is estimated from

u4+xyA) Oxy+ ou~(X, -4x). (20)U(X + AX, Y + A y) = U°(X, Y) + N X, )(0

The wave drag coefficient is determined from a contoui integral of the jump in pressure across
the shock, which may be written as13:

Cd = _65/3M;o3/4 (/ + J1 3 dy, (21)

where M. is the free-stream Mach number, 6 is the nominal airfoil thickness, -f is the ratio of specific
heats and (u) is the jump in u across the shock.

For the Euler analysis a different implementation of the method of the strained coordinates is
utilized. First, since the wa,,e drag is calculated by Integrating surface pressures, only the solution at
the body surface needs to be approximated. The coordinate straining in y direction is not necessary.
Furthermore, accurate solutions for the Euler wave drag were obtained by approximating the surface-
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pressures directly, rather than computing from the flow field. Thus the surface pressure sensitivity
and approximation, respectively were calculated as

a X, YOW) = 1 (p[x + AX, Yo(X+ Ax)] - pIx, Yo(W)I) , (22)
4

p[x + AX, Yo(x + AX)] = p°[x, Yo(X)] + fa,9IX Yo(x)] (X - X), (23)

where Ax is the amount of coordinate straining and the superscript 0 corresponds to the value for
the nominal design. The pressure on the perturbed geometry can be approximated by using Taylor
series expansion about this pressure on the baseline geometry and then the wave drag coefficient
is determined from the integration of the approximate surface pressure force in x-direction.

The non-uniqueness of the straining function has been discussed in Refs. 17 and 18. Here,
several tests were made to select the best straining function in terms of approximation accuracy for
the Euler analysis. The linear piecewise continuous straining appeared to be most accurate and
well-behaved. This has been also pointed out with the full potential method in Ref. 18. The linear
piecewise continuous function is given by

S(X) = lz, ;o < X < x , (24)

, (c-X)/(c-X.) :x, 5X__c,

was used, where x, is the location of shock wave.
The results of Nixon's coordinate-straining approximation on the drag coefficient are tabulated

in Tables la and lb. It is seen to significantly improve the wave drag approximation, with the errors
reducing to less than 3% for the TSD solutions and 7% for the Euler solutions, when the design
variables change by 2%. The effect of this approximation on the airfoil pressure distributions is
shown in Figs. la and lb.

DESIGN RESULTS
In this section we consider several optimization strategies for the transonic airfoil design problem

of maximizing lift with constraints on wave-drag and airfoil cross-sectional area as given by Eq. (1).
The minimum non-dimensional area is taken to be A,,, = 0.075. The wave drag constraint is taken
to be Cd, = 0.004 for the TSD designs and Cd, = 0.010 for the Euler designs.

Designs based on the TSD analysis
Strategy A: Approximate Optimization with Tight Move Limits - The first optimization strategy that we
employed consisted of imposing tight move limits in the approximate optimization procedure. The
results of applying this strategy with two different initial designs are tabulated in Tables 2a and 2b.
In the first case, we imposed 5% move limits in order to keep the error in the drag approximation to
within 10%. The solution ceased to improve after 27 iterations and the move limits were tightened
to 2.5%. At 60 iterations the move limits were further reduced to 1.25% and the solution was con-
sidered to be converged. However, in the second case, corresponding to different initial conditions,
employing a similar strategy resulted in a completely different design, as can be seen in Table 2b.

In order to examine whether these solutions were local maxima we considered the following:
denoting the first converged solution as 91 and the second as .29, we defined an intermediate
design state g = g 2 + 9 - .92), (25)

where the parameter may be considered the proportional distance of the intermediate design
between 2 and . 1 . We computed both approximate and exact value for the lift and wave-drag
coefficients for intermediate designs with 0 < _< 1. The results are plotted in Fig. 2. From the
upper chart in Fig. 2 we see that the lift coefficient is well-behaved between design state 2 and
state 1, exhibiting no local maxima or minima. In the lower chart, we see that the culprit is the
drag-coefficient constraint, which exhibits a very wavy behavior about Cd = 0.0040. Thus we can see
that if we are a design state 2, the optimizer would prevent you from moving toward state 1, since
that would be a direction of increasing drag.
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Strategy B: Drag Minimization folowed by Lift Maximization - The strategy that we found to be useful
to avoid the problems associated with the drag constraint consisted of interchanging the role of the
drag constraint with the lift objective function: We had noticed that design problems of minimizing
drag with a constraint on the lift were well behaved. In order to solve the design problem formulated
in this paper, we adopted the following strategy: first the wave-drag coefficient was minimized with
a constraint on the lift coefficient of C, > 0.5 and cross-sectional area ratio A > 0.075; then, when C
was below 0.004 we reverted back to the original design formulation of maximizing C with constraints
of Cd < 0.004 and A > 0.075.

The results of this strategy were very good. We found that during the drag minimization phase,
very large move limits, as large as 500% could be used without any adverse effects. During the
lift maximization phase, move limits of 20/6 were imposed. This strategy seemed to be robust, and
the solutions did not depend upon the initial data. The design history for the first case, starting
from k0 = (1.0, 0.0, 0.0, 0.O)T is tabulated in Table 3a. The design results for four different initial
designs are summarized in Table 3b. In all cases convergence to nearly the same design result
was obtained in 8-13 design cycles. The pressure coefficient and corresponding airfoil shape of
the initial and final designs tabulated in Table 3a, are shown in Fig. 3. The design appears to be
physically reasonable, with a weakened shock wave and lift increased through aft camber.

Strategy C: Approximate Optimization withAbsolute Move Limits - After we obtained successful design
results using the strategy B, we carefully investigated the TSD solutions to determine the cause of
the noisy drag calculation. We found that the spline interpolation routine in the TSFOIL program
generated an irregular airfoil leading-edge geometry. Although this should not be important in the
TSD solutions, which lose their validity at the leading edge, it clearly affected wave drag calculations
and generated noise. We replaced the original routine with a more effective interpolation based on
the approximate arc-length of the airfoil with a periodic boundary condition and consequently was
able to generate fairly smooth and round noses.

Next, we attempted to directly maximize the lift with tight move limits using the new geometry
interpolations. The design process behaved much better due to the considerably reduced noise in
the wave drag, even though the noise was not removed completely. We felt that we should increase
the move limits in order to get faster convergence. We also found that we could produce reasonably
efficient designs using move limits which were fixed absolute values rather than percentages of the
design variables. By several tests, we found that initially 0.5 could be used without any adverse
effect and then it was reduced by half when the design did not make any improvement. The design
results using this procedure are tabulated in Tables 4a and 4b. We experienced some convergence
difficulties with TSFOIL using this approach. We will examine this strategy in more detail with the
Euler analysis method.

For the TSD designs, each exact airfoil analysis using the program TSFOIL required 10-15
CPU seconds on the IBM 3090 at V. P. I. & S. U., with N+1(5) analyses needed per design cycle.
The approximate optimization using the program NEWSUMT-A required 10-12 CPU seconds on the
same computer.

Designs based on the Euler analysis

On the basis of the TSD design experience, we applied the two successful design strategies, B
and C to the same design problem with the Euler analysis. Recall that the wave-drag constraint
value was changed to 0.01 for the Euler design due to the differences in wave drag prediction between
the TSD and Euler methods. The original value of 0.004 was found to be too stringent for the design
problem with the Euler analysis.

Strategy B: Drag Minimization followed by Lift Maximization - Table 5a represents the complete design
history for the first case, starting from X0 = (1.0, 0.0, 0.0, O.O)T . In the lift maximization phase,
initially 50% move limits were utilized, which yielded a large improvement in the lift coefficient to
a value of Ci = 0.7136 for the first 8 iterations. After that we reduced move limits by half twice and
then finally we imposed very tight move limits of 2% which after 25 iterations resulted in C, = 0.7144.
For the purposes of this study, we consider the design achieved after 8 iterations, corresponding to
the 50% move limits to be acceptable as a final design. The equivalent value of C, in the table is
the relevant estimated lift coefficient when all of the violated constraints are brought to be critical.
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Lagrange multipliers are used to estimate these equivalent lift coefficients since they represent the
amount of change in the objective function due to the unit change in a constraint at an optimum.
This provides us information whether the design makes true improvement or not. We found that
this strategy was as robust and efficient for the design based on the Euler method as it was for the
TSD method. As shown in Table 5b, four different initial conditions yielded nearly the same final
design in 10-12 design cycles. The pressure distributions and corresponding airfoil shapes of the
initial and final designs are shown in Fig. 4.

Strategy C: Lft Maximization with Absolute Move Limits - The complete design history for the first
case with strategy C is tabulated In Table 6a. Here also, we consider the design achieved after
9 Iterations, corresponding to the 0.5 move limits to be acceptable as a final design. Table 6b
represents the summary of the design results for four different cases. All cases did converge to
approximately the same design result in 8-10 global iterations.

For the Euler designs, eac -ex t a.rfoil alyiusn the , progra FLM .ure ,appr..

imately 40 CPU seconds on the CRAY 2S at NASA Langley. The approximate optimization using
the program NEWSUMT-A required 40-60 CPU seconds on the IBM 3090 at V. P. I. & S. U. The
additional computer time associated with the approximate optimization of the Euler design is partly
related to the more complicated wave drag calculation compared to that used for the TSD design.

Error Magnification during Optimization

Table 7 compares the lift/wave drag ratios predicted by TSD and Euler methods for the four
airfoils used in the shz 9e definition and the optimum TSD airfoil. It is seen that the agreement
between TSD and Euler is much poorer for the optimized airfoil. This indicates that there may be
a risk associated with optimization based on an approximate method. The optimization procedure
may "improve" the design by exploiting the weaknesses of the approximation.

CONCLUSIONS
We have considered numerical optimization procedures for the design of transonic airfoils based

on the transonic small-disturbance (TSD) and Euler equations. A sequential approximate optimiza-
tion procedure was implemented with accurate approximation of the wave drag based on the Nixon's
coordinate straining technique. A modification of the surface boundary conditions was utilized in
order to efficiently compute sensitivity derivatives without remeshing the grid with the Euler anal-
ysis.

The airfoil design problem which we considered consisted of maximizing the lift with constraints
on the wave drag and area. We found that when the computed drag did not vary smoothly with the
design parameters, the optimization process produced local extrema. A procedure interchanging
the role of the objective function and constraint, initially minimizing drag with a constraint on the
lift was found to be effective in producing converged designs. This procedure was also proven to be
robust and efficient for cases where the drag varied smoothly, such as with the Euler solutions. The
direct lift maximization with move limits which were fixed absolute values of the design variables,
was also found to be a reliable and efficient procedure for designs based upon the Euler equations.
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change' Lift Coeff. Diag Coeff. change* Lift Coeff. Drag Coeff.

% Linear Exact Linear Coord-St. Exact % Linear Exact Linear Coord-St. Exact

0.0 0.5341 _ ! 0.00511 00 0.4878 0.00787

0.5 0.5472 05471 000584 000579 0.00585 0 5 0.4948 04942 0.00866 0.00870 0.00854

.0.5 0.5210 0.5216 0.00439 0.00447 0.00436 -0.5 0 4809 04813 0.00708 0 00718 0.00724

1 0 0.5602 0.5614 0.00656 0.00654 0.00657 1.0 0.5016 0.5006 0.00946 000957 0.00923

-1.0 0.5080 05098 0.00367 0.00396 0.00400 -1.0 0.4737 04749 0.00628 0.00652 0.00664

1.5 0.5733 05762 000728 0.00736 0.00755 1.5 0.5086 05070 0.01029 0.01049 0.00996

.1.5 04949 0.4987 0.00295 0.00346 0.00342 .1 5 04667 04685 0.00549 0.00590 000607

2.0 0.5864 05918 0.00800 0.00827 0.00845 2.0 05153 05135 001104 0.01149 001072

-20 0,4818 0.4881 0.00223 0 00302 0.00295 -20 0.4598 04621 0.00470 0.00533 000553

Design variables increased by specified percentage from * Design vanables increased by specified percentage from
(0.5, 0.5, -0 5, 0.5)T (0.5, 0.5, .0.5, 0 .5)T.

Table la. Lift and Drag Approximations - TSD. Table lb. Lift and Drag Approximations - Euler.
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Design __Design Parameters Desig~n Design Paiaiitis
cycle X , X1 2 X X 4  CI C A ,yde X , X 2 X 3 X 4' C I C , A

S 0.5 0.5 .0.5 .0,5 0.5296 0.0059 0.0805 0 -. 4 0.7 -3 - 0 -
- 0 0. -. 4 07 0. 0.4418 0.0061 0.0739

1 0.510 0.498 -0,524 0.490 0.4954 0.0040 0.0779 1 0.837 -0.426 0-659 -0.281, 0.4081 0.0038 0.072

27 0.400 0.750 -0.649 0.481 0.5385 0.0040 0.0750 9 1.0931.0.483 0.504 -0.273 0.4061 0,0041 0.0750

60 0.301 0.891 .0.7631 0.565 0.5542 0.0040 0.0750 11 1.114 .0.487 0.491 .0.275 0.4049 0.0040 0.0750

71 0.280 0.9341-0.805 0.59110.559210.0040 0.0750 15 1.122 .0.487 0.487 -0.277 0.4055 0.0040 0.0750

Table 2a. TSD Design Strategy A: Approximate Optimization Table 2b. TSD Design Strategy A: Approximate Optimization
with Tight Move Limits - initial condition 1. with Tight Move Limits - initial condition 2.

Design Design Parameters Design Parameters design

cycle X, X2  X3 X4  C1 C,4  A case X, X2  X3  X 4  CI C A cycles
0 1.0 0.0 0.0 0.0 0.5656 0.0103 0.0822 1.0 0.0 0.0 0.0 0.5656 0.0103 0.0822
1 1.024 0.100 -0.075 -0.096 0.5195 0.0054 0.0750 1 0.001 1.876 -1.940 1.209 0.7078 0.0041 0.0750 10
2 0.773 0.280 -0.244 0.137 0.5041 0.0038 0.0750 0.0 1.0 0.0 0.0 1.0676 0.0459 0.0771
3 0.631 0.417 -0.393 0.295 0.4999 0.0032 0.0750 2 -0.025 1878 -1.889 1.17910.7149 0,0042 00750 8

4 0.504 0.516 -0.476 0.404 0.4989 0.0028 0.0750 0.0 0.0 0.8 0.0 0.6491 0.0297 0.07865 0.418 0.650 -0.648 0.542 0.5005 0.0025 0.0750 3 0043 1904 -2.068 1.279 0.7034 0.041 0,0750 13

6 0.071 1.038 -.1072 0.945 0.5080 0.0017 0.0750 ------------------- - -- - - -- - - - 0.0 0.0 0.0 1.0 0.5534 0.0242 0.0996
7 0.080 1.308 -1.614 1.261 0.5124 0.0011 0.0757 0 0 8 0 1 .3 8 - .6 4 1 2 6 1 0 .5 2 4 ) .0 1 1 .0 7 0 ! 4 -0 .0 0 6 1 .9 2 3 -2 .0 3 3 1 .2 7 0 0 .7 0 9 1 0 .0 0 4 0 0 .0 7 5 0 1 0
8 0.001 1.475 -1.938 1.516 0.5049 0.0006 0.0750 --- -

*9 0.001 1.770 -1.863 1.215 0.6696 0.0034 0.0750 Table 3b. TSD Design Strategy B: Drag Minimization followed
10 0.001 1.876 -1.940 1.209 0.7078 0.0041 0.0750 by Lift Maximization - summary of designs with var.

ious initial conditions.
* begin lift maximization.

Table 3a. TSD Design Strategy B : Drag Minimization followed
by Lift Maximization - initial condition 1.

Design Design Parameters Design Parameters design
cycle X, X2  X3  X C I C4  A case X X2  X, X, C C4, A cycles

0 1.0 0.0 0.0 0.0 0.5656 0.0103 0.0822 1.0 0.0 0.0 0.0 0.5656 0.0103 0.0822
1 1.123 0.347 -0,491 0.041 0.5594 0.0061 0.0750 1 -0.224 1.916 -1.752 1.179 0.7218 0.004110.0750 8

2 0.640 0.524 -0.452 0.263 0.5450 0.0043 0.0750 0.0 1.0 0.0 0.0 1.0676 0.0459 0.0771
3 0.518 0.881 -0.844 0.473 0.5966 0.0045 0.0750 2 -0.332 2.035 -1.841 1.264 0.7360 0.0040 0.0750 8
4 0.032 1.257 -1.000 0.737 0.6407 0.0044 0.0750 0.0 0.0 0.8 0.0 0.6491 0.0297 0.0786
5 0.155 1.381 -1.249 0.785 0.6649 0.0046 0.0750 3 -0.539 2.340 -2.069 1,423 0.7922 0.0041 0.0753 8
6 -0.006 1.524 -1.374 0.929 0.6672 0.0041 0.0750 0.0 0.0 0.0 1.0 0.5534 0.0242 0.0996
7 -0.099 1.667 -1.504 1.024 0.6853 0.0041 0.0750 4 -0.434 2.077 -1.749 1.224 0.7638 0.0042 0.0750 5
8 -0.224 1.916 -1,752 1.179 0.7218 0.0041 0.0750 L 4__741' 0 04 7

- -Table 4b. TSD Design Strategy C : Approximate Optimiza-
Table 4a. TSD Design Strategy C: Approximate Optimization tion with Absolute Move limits - summary of designs

with Absolute Move Limits - initial condition I. with various initial conditions.

L
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Move Design Design Parameters o Move Design Design Parameters "
Limits cycle X, X3 X3 X4 C C4  A C,... Limit, cycle X1  X 2  Xs X4  C, CI A C,..

0 1.0 O0 0.0 00 .48912 .011768 0.0810 0 1.0 00 00 0.0 48912 .01178 00810
1 0.827 0.100 0.094 -0.088 .49602 .09069 0.0750 1 0652 0.500-0.220 0.057 .56529 .010919 0.0750

50% 2 0.555 0.331 -0.108 0.157 .49838 .007961 0.0750 2 0.239 1.000 -0.672 0455 .60127 .010031 0.0750
3 0.325 0558 -0.346 0.405 .49742 .006879 0.070 3 0.071 1.267 -0.923 0.634 62789 .009978 0.0750
4 -0.313 1150 0.923 1.040 .49438 .005745 0.0750 0.5 4 -0078 1.470 .1.098 0.772 64813 .010042 00750

*5 -0.270 1.645 -1.231 0.927 65665 .009951 0.0750 5 -0.227 1 635 .1.227 0.894 .66244 .010129 0.0750
6 .0 375 1.924 .1.549 1.110 .68561 .009783 0.0750 6 -0.341 1.792 -1.380 1.018 67371 .009992 0.0750

50% 7 -0.480 2.067 .1.665 1.200 .70255 .010024 0.0750 7 -0.434 1.956 -I 553 1.137 .68770 009898 0.0750
A8  .0.632 2.218 -1.777 1.319 .71358 .010223 0.0750 .70617 8 .0.514 2.082 -1.675 1.226 69950 009951 00750
9 -0.721 2.277 -1822 1.390 .71068 .010204 00750 .70358 49 -0605 2.159 -1.722 1.288 70507 010117,0 0750 70143
10 -0.679 2.252 .1 822 1.375 .70759 ,010026 0.0750 .70669 10 10677 2.199 -1 749 1342 70144 010089 00750 69855

25% A11 10729 2.3031-1.870 1.425 70838 .010026 00750 .70746 11 -0665 2232 .1.805 1362 70542 009989 00750 70581
12 .0792 2.350 .1905 1474 .70806 .010084 0.0750 .70484 0.25 12 -0721 2.292 .1858 1.415 70795 010031 00750 70684

12.5% 13 10.729 2.295 -1 860 1.421 70698 .010019 0.0750 70680 A13  -0768 2.340 -1907 1.465 70768 010012 00750 .70723
14 -0.721 2.302 .1.877 1.426 .70759 .009973 00750 .70864 14 '-0.811 2.367 -1.924 1 495 70710 010064 00750 70464
15 -0.717 2.307 -1.885 1.426 70899 .009979 00750 70980 0.125 A15  -0.784 2.360 .1.931 1486 70734 .009989 0.0750 .70776

"- - - 16 -0.810 2.379 -1.942 1.504 70790 010040 0.0750 .70632
22 -0.719 2.344 -1.931 1.446 .71384 .009999 0 0750 .71388 17 -0778 2365 .1942 1 488 70809 009970 0,0750 .70932
23 -0.725 2.351 -1.939 1.452 .71404 .010001 0.0750 .71402 - - - - -

24 -0736 2.365 .1 954 1465 .71427 009998 00750 71435 0.02 29 -0790 2.415 -2.005 1.521 71310 009997 00750 7132325 -0.736 2.365 -1.953 1.465 .71439 .010002 0.0750 .71432 . _ .

* begin lift maxmization. 35 -0.804 2.435 .2.028 1.540 .71336 .009998 0.0750 .71345s atarting point for reduced move limits. 36 -0.807 2.438 .2.032 1.543 .1343 .010000 0.0750 .7139
C,,,: Equivalent Value of C,. - .- 202 .43 "1739A starting point for reduced move limits.

Table S. Euler Design Strategy B : Drag Mimization followed by Lift to C,,.. : Equivalent Value of Cl,.
Maximiztion - initial condition 1. Table is. Euler Design Strategy C : Apprximate Optimization with Ab-

solute Move Limits - initial condition 1.

Design Parameters design Airfoils ClI1d_.,
case_ Z x, xIA cylsTSD Anaysis Euler Analysis

cae X 2 X ~ , C ylsAirfoil 1 . 54.9 41.4
1.0 0.0 0.0 0.0 0.4891 0.0118 0.0810

1 -0.670 2.266 .1.837 1.371 0.7129 0.0101 0.0750 11 Airfoil 2 23.3 26.2

0.0 1.0 0.0 0.0 0.6977 0.0266 0.0759 Airfoil 3 21.9 23.9
2 .0.640 2.233 -1.801 1.337 0.7127 0.0101 0.0750 11 Airfoil 4 22.9 21.6

0.0 0.0 1.0 0.0 0.5050 0.0467 0.0967 Optimized, TSD 171.0 83.4
3 .0.649 2.237 -1.803 1.344 0.7121 0.0101 0.0750 12

0.0 10.0 0.0 1.0 0.3558 0.0165 0.0984 Table 7. Error Maginification during Optimization.

4 .0.6302.206-1.772 1.322,0.7090 0.0101 0.0750 10 -20

Table 5b. Euler Design Strategy B : Drag Minimization fol. -,

lowed by Lift maximiation - summary of designs
with various initial conditions.

-05

00

Design Parameters design 05
case X 1- X 2  X I X 4  C, Cd A cycles W. 0.7s

1.0 0.0 0.0 0.0 0.4891 0.0118 0.0810 10 0

1 -0.605 2.159 -1.722 1.288 0.7051 0.0101 0.0750 9

0.0 1.0 0.0 0.0 0.6977 0.0266 0.0759 00 0? 04 06 08 0

2 .0.636 2.194 -1 759 0.323 0.7055 0.0101 0.0750 8 x/c

0.0 0.0 1.0 0.0 0.5050 0.0467 0.0967

3 -0.650 2.208 -1.774 1.339 0.7049 0.0100 0.0750 10 Bass solution, X (0.50. 0 50. 50. 0.50)

0.0 0.0 0.0 1.0 0.3558 0.0165 0.0984 0-0 Approximolion, X (0.51. 0.5t.-O49. 0.51)

4 -0664 2.255 -1.833 1372 0.7090 0.0101 0.0750 9 - toCt Analysis. X = (0.51. 0.51.-0.49. 0.51)

Table 6b. Euler Design Strategy C . Approximate Optimiza- Figure la. Approximation of Pressure Distribution Based On
tioa ith Absolute Move linms - summary of designs
with various initial conditions. the Method of Strained Coordinates - TSD.tionwit Abolue Moe lmit -ummay o deign
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F IDENTIFICATION OF DYNAMIC CHARACTERISTICS
OF FLEXIBLE ROTORS AS DYNAMIC INVERSE PROBLEM

W.P.Roisman, L.D.Vajingortin
Khmelnitsky Technological Institute, USSR.

In this work the problem of dynamic and balancing of flexible rotors were
considered, wich problems were set and solved as the problem of the identifi-
cation of flexible rotor systems, or which is the same, the inverse problem of
the oscillation theory dealing with the task of the identifying the outside
influences and system parameters on the basis of the law of motion known. This
approach to the problem allows to disclose the picture of disbalances through-
out the rotor-under-test (something that traditional method of flexible rotor
balancing, based on natural oscillations, could not provide), and identify
dynamic characteristics of the system, which correspond to a selected mathe-

matical model. Eventually, various methods of balancing were developed depending
on the special features of the machines as their design, technology and opera-
tion specifications. Also, theoretical and practical methods are given for the
flexible rotor balancing at far-from-critical rotation frequences, which
methods do not necessarily require to know forms of oscillation, dissipation and
elasticity-and-inertia characteristics, and to use testing masses.

1. INTRODUCTION
The universal trend of reducing weight and gabarits of flying device

engines along with high power requirements has paved way for the wide-spread
application of flexible rotors and non-rigid supports. For these types of
rotors, dynamics problem dealing, whith the elimination of dangerous resonance
states in the area of operating rotation frequences of the machine, becomes
vital. For machines under development, which do not have any well-proven analogs
it is hardly possible to evaluate in terms of quantity such characteristics as
inertia, rigidity and damping ca-ability judging only by the drawing of the
machine, for every one of construction elements comes simultaneously as a mass
and rigidity, a source of both exiting and extinguishing vibrations, and the
assumption of rotor non-deformity is no more valid. This brings us to the point
where principally new balancing, technique and dynamic research are required.
Now, a good deal of experimental methods are known, which allow to more
precisely evaluate the elasticity-and-inertia parameters, deflection curves and
rotation frequences while finishing the iachine. However, these methods can not
always take into account the diversity of influencing factors and dynamic model
of the system. In the meanwhile, it is the task of a vital importance to find
accurate values of the said parameters, corresponding to the selected mathema-
tical model, thus making this model more effective. Finding values of these
parameters for subsequent ascertaining the deflection curve forms and rotation
frequences is an extremely important stage of realization of the most balancing
methods.

It is well known that now close attention has been given to the problem of
development of mathematical or dynamic models of higher accuracy, which models
have to reflect real objects, and as many of their real features as possible.
However, no calculation scheme can fully reflect the set of properties of the
real object (through the vast number of these properties), but it is possible to
make them close to reality. Any mathematical models are under risk of being
compromized, whatever close they might be to reality, if precisely dynamic
characteristics of the machine are unknown. Therefore, identification methods
are required, allowing to determine dissipation and elasticity-and-inertia
characteristics of the machine on the basis of appropriate experiments, the

L sought-for parameters being calculated with regard for all more or less j
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Fimportant peculiari'ties of the machine. By practicing these methods we can ]
escape the necessity for particularizing and analyzing every one of the
machine's characteristics. Parameters thus identified are all the more valuable
due to the fact that they were defined with regard to the selected idealization
of the real object, that is the said parameters were reduced to the selected
dynamic model describing the real system. Whether the selected dynamic model is
adequate to the real model and whether identified parameters are sufficiently
accurate, one can judge by how much measurred parameters of the real object
differ from those calculated in accord with the identified parameters. Criti-
cal rotation frequences, deflection curve forms, peaks of vibration et cetera
can serve as those criterion parameters. Plus, methods of identification can be
used to set the distribution of unbalances along the rotor axis. As the rotor
eccentricities are included in the equations for disturbed motion of the rotor,
it is possible to create identification algorithms of elasticity-and-inertia and
dissipation characteristics along with the rotor eccentricities at the same
time. The theory of flexible rotor balancing pays much attention to the problem
of computing the values of discrete correcting masses for rotors with pre-set
unbalanse, while the angular and linear values of the unbalance itself were
half-neglected. In the meanwhile, it is obvious that one has to know the
unbalance before getting to the task of finding solution to the set of problems
dealing with dynamic strength.

2. METHODS OF BALANCING AND IDENTIFICATION OF DYNAMIC
CHARACTERISTICS OF FLEXIBLE ROTORS

Taking into account rotor flexibility allows to state and solve very impor-
tant (although more complicated) problems which were beyond the rigid rotor
method possibilities, and first of all it allows to find eccentricities of any
masses placed along the rotor axis. But unbalance is not the value to be direct-
ly measured, instead it has to be calculated through some other directly
measured magnitudes connected with the former one by unknown operators. Hence,
it is evident that the only way to find the flexible rotor unbalances lies
through their identification on the results of operating testing of the machine
or any emulating testing. It is noteworthy that along with unbalances, elasti-
city-and-inertia and dissipation characteristics as well as all other characte-
ristics of the identification algorithm can be identified. As practice demons-
trated, complex structure rotors being tested at critical frequences get defor-
med in three-dimensional manner rather than in two-dimensional one, so that the
orthogonality conditions are not valid for them. Therefore, it is necessary to
develop balancing methods on the basis of real deformations at critical
frequences. But, as the critical frequency operation is not safe and it can
affect the strength and life of the construction, it is desirable to develop
balancing methods on natural curve form of the rotor, but at non-critical
friquences and with the restricted number of start-ups. There are sertain types
of machines which require balancing only under operation mode with unchanging
frequency value, while others have to be balanced over the full frequency range.
For each case, individual and economically effective balancing methods and
approaches can be employed. Far from all structures would permit the attaching
of testing masses. For such types of machines it is necessary to employ balan-
cing methods free from testing unbalances. As it is connected with considerable
difficulties to obtain complex object's natural oscillation forms, one should
permanently search for the balancing methods not requiring the said oscillation
forms.

Certain types of designs allow deflection measuring, while other reject the
possibility absolutly. Therefore, balancing methods are needed, resting on the
deflection measuring and support reactions, housing vibrations et cetera.
La Finally, in a number of cases a method is necessary which combines all
above-mentioned methods, that is when there is no need to know curve forms and J
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Fscillation frequences or to work at critical frequences of rotor rotation, or ]
to use testing masses and additional start-ups, or even to know riqidity, mass
or demping parameters of the rotor - one has only to measure general weight and
external geometric dimensions.

The above-stated material proves a necessity for variuos methods of
flexible rotor balancing depended on specific designing, productive, operating,
economic and other features.

Identification algorithms of rotor characteristics of mass and reqidity as
well as their eccenzricities were attained on the basis of solutions for the
differential and integral equations of the oscillations, such as Fredholm's
equations of the 2-nd kind 113, giving a description of non-balanced rotor
motion, the rotor having an arbitrary mass-and-rigidity distribution law.

2 L 2 Ly (z) = 0.m (s). - (z, s)-(y (s) +e (s) ) ds-W " J I (s),B (z, s).y' (s) + (s) ) ds, ( 1)
O" 0

2 L 2 L
Y' (z) =U). f m(s). e (z' SH.Y(s) +e (s) )ds-0) . f I (s 6 (z, s).yl (s) + (s) )ds,

0 0

where y(z), y'(z) - is, respectively, deflection and turning angle of coordinate
z cross-section of the rotor, y(s), y'(s), m(r), I(s), e(s),g (s) is, recpecti-
vely, deflection and angle of turning, linear mass, moment of inertia, radial
and angular eccentricities of the coordinate s cross-section of rotor L,CO,d,B,X,
6 - respectively, the length, anqular speed, and influence functions.

Two ways are suggested in respect of the search for solution to these
equations. The first one is to approximize the equations with a system of
linear equations, which are convenient for decription of the motion of rotors
with discrete parameters, while the second way is excellent for description of
rotors with distributed parameters using Gilbert-Shmidt theorem for accompli-
shing expansion in a series witn respect to deflection forms of some parameters.
Both ways of finding the solution would lead you to the balancing methods
resting on natural form of deflection at critical rotation frequences. The
difference between them is that the second way is usable after some restrictions
being imposed upon the distribution function,making the said expansion possible,
while the first way is free from these restrictions, and therefore it covers a
wider range of rotor types.

2.1. TESTING MASS BALANCING
There exists more general solution. Taking into account that a defection at

any rotation frequences can be represented by the sum of deflections (which
deflections are multiplyed by some constant factors), it is possible to employ
the method of balancing on natural deflection forms at any other rotation
frequency at which the rotor deflection can be detected; and doing this you can
use a single testing mass system whith a singe start-up of the machine.

Really, carring out the rotor deflection measurments at far-from-critical
frequences (first measurment is made on the rotor with initial unbalance, the
second one-on the rotor with testing unbalances system whose eccentricities are
similar to the measured elasticity line of the rotor) and accomplishing the
expansion of these deflections and eccentricities in series, you can find the
components of eccentricities of the counterbalances, and the whole system e(z).
As balancing frequences are subjected to no restrictions except for as indica-
tors of the rotor deformity, this common method when particularized by critical
frequences, turns into well-known balancing method at critical frequences.

Lr In those cases when natural deflection forms of a rotor are not known, the

received information can be processed by means of expansion in ser.ies related to



Thir ine qionCofci nersefiyDrepsrig Co07. 4 p dfhtizadoniEngine ringScin ,s
_ (IIES~fl'.,Editor-: G.S. Dulikravich: Washinrtoi15.C.'O~iober:23-25:.i991. - , , -- -..

systemof fuctions suh as sine seri es as shown, beow:

aY. orhonrmal syt -6 f lk udibt uh i',; .. . , 6 n: " nkz.

(z)- + A-s' ()

2 kl k L

Bo n lkz
h(z) - + ZB -sin -"1 .(3)

2 k=l k L

yfz)= , + sin OL,(4)

2 k=l k L

Fo n flkze(z)= - +Z:F -sin ,(5)

2 k=1 k L

where y(z) and y (z) - is the deflection caused by the initial unbalance, and
the deflection appeared after attaching the testing unbalance system on the
rotor, respectively; h(z) and e(z) - are the systems of testing and initial
eccentricities, respectively; Ai, Big Di, Fi - coefficients of the expansions.

Assuming the unbalance-to-deflection ratio for similar expansion members to
be linear, we can obtain:

Fi =Ai Bi /(Di-Ai),

After the curves of eccentricity projection on the two inter-perpendicular
planes have been determined their vector sum can be found, which allows to
obtain the form of the curve depicting the distribution of the initial eccentri-
cities.

It is noteworthy that you can use not only deflections functions to
implement these methods but also their derivatives such as cross-section
turning angles, mechanical tensions, and relative deformation; note that the
highest form of unbalance reveals itself in a more apparent manner with the

(i)
deflection derivatives y that with the deflection itself, as can be seen from
the expression

(i) nl -, i nkz
y - * A " k -sin -, i=192,394.

i k=1 k L
L

2.2. BALANCING WITHOUT TESTING MASSES
This group of methods ensues from the first method of finding solution for

Fredholm equation and suggests the eccentricity identification on basis of sta-
tic coefficients of influence. The coefficient of influence is the value of
deflection (or turning angle) of the i-cross-section caused by unity force (or
bending moment) applied to the k-cross-section. The main idea of the method is
like the following: deflections and turning angles or one of these parameters
are measured at noncritical rotation frequencies and their projections on two
inter-perpendicular planes are substituted into equations (6); equations (6) are
solved for unknown projections of eccentricities.

n 2 n 2
y 2= : m .( ,O.(y + e ) -Z I .B *W -(y'+ ),

i k=1 k ik k yk k=1 k ik k yk (6)

L J
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F 'f * = 2 n 2 (y+ ,

i k=1 k ik yk k=1 k ik k yk

Similar equations may be written and solved for the second projection of
def I ections.

This group of methods gave birth to some methods, that can be distinguished
by the parameters to be measured such as deflections, turning angles, support
reactions, and vibrations.

2.3. PARAMETRIC IDENTIFICATION OF FLEXIBLE ROTORS
In order to escape the procedures of obtaining static coefficient of

influence as well, a group of identification algorithms was suggested allowing
to find the unknown elasticity-and-inertia characteristics related to the
mathematical model depicting the real rotor.

Let's consider the universally known dependences of the deflection theory:
2

M" (za) = q(z,C0) = m(z).u) .(y(z, W) + e (z)), (7)
zz y

where bending moment M(z,Wu) at the rotation frequance 60 is equal to

M(z,u )=K(z,UO )* EI (z) , (8)

The rotor axis curvature is determined from the expression

2 3/2
K=y" /(1+(y') ) , (9)

and q(z,W ) - is inertial load, E - is Young's modulus.
Taking into account the resistance forces we can obtain (denoting the total

moment of these forces through f(z,(A))):

f(z,40) + M(z,W.) = K(z,W)-EI(z).

Using relations (7-9) we can obtain after some manipulations:
I

-----. f" (z,u)) +od (z)'K" (z,cO) + 2oL (z)'K1(z,uJ) +
M(z) zz o zz 1 z

2 2
+d (z).K(-,&)-.*e(z) =W-y(z,6),
2 y

(i)
where I d [EI(z)]

o,(z)= -- = ,I2

i m(z) i
d -

Let's reprezent the function - f" (-z,o)/m(z) as expanded in the series on
zz

z. Setting a finite number for members of the series we assume that the sum of
the abolished members would not violate the pre-set deflection measuring

accuracy. Hence,

L
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' (z W'O) +d/ (z)- K" -(z,a)*) +26 (z). K'(z,) + (z)-K(z,CO)-
k=O k o zz I z 2

2 2
-C.e (zA)= .y(zU).

Y

The objective of consequent manipulations is to find the value of fuctions
5(z), k=O,1,...,n; e (z);.( (z), i=0,1,2 for some fixed point z=a. Thus we
k y i

have n+5 unknown values requiring for their determination the same number of
equations.

Then, we obtain the sought-for system of n+5 equations with the same number
of unknown values, putting down the previous equation for each value of CO at
the point z=a. j

n k
E L . (a).W + ( (a).K" (z,uO) + 2 (a).K'(z,a) I +
k=O k j o zz j z=a l z j i z=a

2 2
+d (a).K(a,W ) -e (a)O = W, y(a,Ls), j=1,2,...n+5. (10)

2 j y j j j

When we find the solution for this system we'll be able to determine the
unknown values at the pre-set point. Keeping in mind that this point z=a was
selected arbitrary we create the similar system for any other point z, obtaining
thus the sought-for values at this point.

In this manner we obtain functions e (z) and o (z) (i=0,1,2).
y i

Carring out the similar manipulations for e (z) we obtain the value of the
unbalance vector: x

~.2 2
D(z)=M(), e (z) + e (z)

X y

as well as the angle formed by this vector and OY-axis.
tg = e (.)/e (z).

x y

Finding the solution for the system of equations gives us not only the
eccentricity value but alsod (z), i=0,1,2 andS- (z), k=0,1,..,,n

i k
The known values of Y (z) allow to determine a total moment of resistance,

k
whileoL give reduced masses and regidities of the rotor

i

z L z
m(z):M.exp(j (d / )dz)/(V (z).f exp (I (vt /at )du)dz/ U (z),

0 10 0 0 0 10 0

EI(z) =d. (z). m(z),
L 0
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Fwhere M - is the mass of the rotor.
In the most general case, a number of eguations required for determining

all unknown values and the same number of rotation frequences at which deflec-
tion values are measured, is equal to n+5. In practice, things are more simple.

If you know the law under which the resistance forces are changing, you
need 4 equations; if this law is accompanied by a law of rigidity changing you
need only 3 equations; with uniform shaft - 2 equations are enough; and if you
know elasticity-and-inertia characteristics you'll need only one equation.

When you find it convenient to use a certain method such as, for example,
the electric strain-gauging for relative deformation measuring and (or) para-
meter stability tracking during the operating period, there are parametric
identification algorithms for eccentricities and flexural rigidity (or eccen-
tricities only) based on the relative deformation being measured, and then the
transition is made to the values of curvature, tension, bending moments, turning
angles and deflections.

2.4. PARAMETRIC IDENTIFICATION ON RELATIVE DEFORMATIONS
Let us use Hocke's law Cr=6.E and linear differential equation for curve

axis of the rotor

M = EI'y" EI 6/t, (11)
z zz

where M - is a bending moment, - is a relative deformation, t-is the distance
z

from the neutral axis to the fibres for which the 9 - measurment is taken.
For multidisk rotor which can to any degree of accuracy approximate (by

means of adjusting a number of disks) a rotor with an arbitary mass
distribution, nonbalanced forces are equal to

2
P = m * (e +y ).K0) , (12)
i i i i

where y can be determined by double integration of y".
i

Bending moment for an arbitrary cross-section of the rotor is equal to the
sum of all moments of external forces (including the support reactions) applied
to a single side (left or right) from the section examined

n
M =2 b .p (13)
zi k=1 ik k,

where b - coefficients depending on the distances from the unbalanced forces to
ik

the supports and cross-section being examined; b are calculated in advance.
ik

Accomplishing the &- measurments at some non-critical frequences for n
sections we can determine the values of bending moments for these sections using
(11); then unbalanced forces can be found from (12). If these forces would now
be compensated with the appropriate counterbalances, the balancing would be
correct only for the anqular speedcO.

To carry out the balancing over the full speed range, you have to determine
eccentricities e using (12). But you can choose another way of searching for

i

the solution.
n

T .E = M 1W =Zb *P /W, (14)

L i i zi i k=l ikk i j
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where W = - is an axial moment of resistance for section ii Ri

Ri - radius of the rotor's cross-section.
The same can be written down differently

n 2
• EI /t =Z b *(y + e )WJ , i=1,2,...,n (15)
i i i k=1 ik k k

Now, if the e and El values are considered unknown, you have to get two
k i

times equations then was represented by system (15); this can be obtained by
measuring the values of e for all sections at some other non-critical angular
speed(0 . It can be shown that equations of the (15) type are independent.

2
2.5. STABILITY OF IDENTIFICATION ALGORITHMS

Thus, all balancing methods requiring no testing masses, are based on the
identification of unbalances within the framework of inverse problems of
dynamics. In this connection, the stability of identification algorithms was
researched on the static influence factors known. The whole research is
published in works [43 and E53. These works also hold all major results.
Fredhom's equation in the matrix form looks like the following (gyroscopic
moments neglected):

2
= A(7 + W ), W (16)

where and E are vectors of n-dimension; A-square matrix of nxn dimension,
whose elements are the products of the static unfluence coefficients by the
masses of corresponding disks.

This model can be practically applied in cases when small measuring errors
of the values in equetion (16) (the values are measured experimentally) cause
similarly small eccentricity calculation errors.

Taking into account the measuring errors we can represent system (16) in
following form:

2 2
7 A=(W0 +AWA )(A+AA) (V +AV +We+Ai) ,

where A are the measuring errors.
In process of evaluating the relative error of the eccentricity identifi-

cation we can see from the following expression
2

iA_[I E 1111 1 2 C((E/A) )-A) IIA II
C(A).C (- - A) - + --- (C(A) I -..... +

(A 2 ! 2 2 )l A

2 2
1 C((E/A. )-A) j~

+ -,C(A)22 2
W It(E/W)-All (A)

(where C-is the stipulation number of any square matrix B, which number is equal
to the product of the straight matrix norm by the norm of invers matrix,that is,

LC(B)= I1BIV B 1 lI,E - is the unit matrix), that the selected model is
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theoretocally stable, but as in reality we can not assume that measurment error
are likely to be less than any pre-set values, this problem is reduced to the
task of evaluating the solution accuracy, which is defined by the stipulation
numbers of the matreces involved.

We succeded in trying to disclose the physical sense of the matrix A
stipulation number. It can be evaluated initially by the ratio of squared
maximum and minimum natural rotation frequences for given discrete model. At
this point, a descrepancy has came over: on the one side, trying to approximate
the real rotor by increasing a number of masses, we bring the dynamic model
still closer to the real structure; on the other side we increase the
calculation error due to the growth of the stipulation number. Gyroscopic
moments (when included in the scheme) also contribute to the growth of the
calculation errors.

This is the sourse for obtaining quantitative relations between balancing
accuracy on the one hand and measuring devices and a number of masses
approximating the real rotor on the other hand. These relations allow to
determine the third factor on the two others. For example, you can select
measuring devices of required accuracy knowing the balancing accuracy and the
planes of correction.

To get the required accuracy under a high stipulation number you can use
the possibility to pass from the one identification algorithm to another one,
for example, from system of equations of the fourth special case of the method
described in section 2.3, with only one equation suggested.

3. EXAMPLE
We are going to analyse the results of the research and balancing of

aero-engine compressor rotor on static influence coefficients. The disk-and-drum
type compressor rotor (Fig.1) consists of ten separate disks bearing operating
fan blades on their rims. Factory balancing was carried out in usual way in tne
"rigid rotor" mode for the two correction planes on a balancing macnine at 80V
rpm with operating frequences within 10000...12500 rpm.

In the process of exploitation some defects emerged such as deformation of
the rear shaft, pin joint breakage, unpermissibly high resonance vibration level
of the whole aero-engine.

Varios calculating techniques for natural oscillation frequences did not
bring any reliable results due to the absence of precise data on the local
rigidities of rotor as well as on the support pliabilities.

To increase the calculating scheme effectiveness, static tests of a number
of rotors of this type were carried out, and precise values of static influence
coefficients were determined over all ten stages. The first critical rotation
frequency for this rotor fixed supports (the frequency was calculated on static
influence coefficients) turned out to be 11000 rpm. Practically this value
coincides with the third peak of vibration of the amplitude-and-frequency
characteristic of the rotor (Fig.2). Peaks of vibration in the region of 4200
rpm and 8300 rpm are connected with resonance oscillation of "rigid" rotor on
pliable supports.

To check whether the precise values of the elasticity-and-inertia characte-
ristics (reduced to the selected model) were used effectively,natural oscillati-
on frequency of this very rotor was calculated, but the calculation scheme
assumed only one general mass-that of the whole rotor (M=115,4 kg) with the
static influence coefficient in the centre-of-mass cross-section. The schemati-
zation error of the calculation of the first natural oscillation frequency
turned out to be not more than 1,5%.

Therefore, we decided to use the said single-mass model for balancing in
the region of the first critical rotation frequency, due to difficulties
connected with attaching correction masses to all stages of the rotor. Maximum

Ldeflection (y=0,15 mm) value of the eighth stage was assumed for the eccentri- J
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On these data the value of e=0,17-10 m was found from the expression
2

y=Lb.m(y+e)a. Correcting mass was brought into on the score of the eighth stage
fan blade, which was replaced. Balancing results are shown on Fig.2.

The carried out research allowed to improve the design and balancing
technology of the rotor and to eleminate the indicated defects.

Eccentricity identification based on measured deflections of the rotor
using static influence coefficients was also carried out by Bradjko A.I. [6]
employing a computerized imitation model, laboratory physical model and a
natural rotor of compressor on an accelarating vacuum stand.

Table I holds data on mass of stages, static influence coefficients and
deflections of the 5-mass rotor, which he balanced.

2 6 2
For W =0,274-10 1/c the following values of eccentricities were

obtained:
-6 -6 -6

e =77,4.10 m; e =89,.910 m; e =105-10 m;
1 2 3

-6 -6
e =79-10 m; e =59,5-10 m.
4 5

Correcting masses were attached to all of the five stages.
As a result of the balancing that was carried out, the maximum rotor

deflections were diminished almost by 4 times, and housing vibration were
diminished by 2,5 times.

CONCLUSIONS
The problem studying dynamics and high-frequency balancing of flexinie

rotor systems can be set and solved as the task of identification of elasticity-
and-inertia characteristics and eccentricities corresponding to a selected
calculating model within the framework of the inverse problem of the oscilation
theory.

On the basis parametric identification of the flexible rotor systems on the
measured vibration parameters of products was developed, providing simultaneous
determining of the mass, rigidity, and demping characteristics of the rotor and
its eccentricities as well.

The identification algorithms obtained on measured parameters of products
allowed to develop three groups of flexible rotor balancing, which don't require
knowing rotor oscillation forms or operating at critical angular speeds:

- with emploing only system of testing masses and a single testing
start-up;

- without employing testing masses and start-ups, grounding known and
unknown elasticity-and-inertia characteristics.

The accomlished research on stability and accuracy of the suggested
identification algorithms allows to have optimal relations between tne reguirec
balancing accuracy, measuring instruments and dynamic model of the system.

The obtained results were used for research of dynamic and high-frequency
balancing of a turbopump assembly unit, a turbogenerator, rotors of gas turbine
engine compressors, and they allowed to considerably lower the vibration level,
deflections and tensions in the parts of flexible rotor systems, thus increasing
life and reliability of products.

L J
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F

Y)'x

Fig. 1. The rotor scheme.

0, 06

Fig.2. Amplitude-and-frequency characteristics of the rotor.
1 - before the balancing; 2 - after the balancing
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F Tab!e I

Data for identification of eccentricities of a
five-masses rotor

N ! masses deflections ! static coefficients of influence
m , kg ' -5 -9
i y .10 m ' .10 , m/N

I I i ! ik
I I I ------------------------------------------ I

1 1 2 3 4 5
------------------------------------------------------------------- I

1.! 9,03 ! 7,87 9,2 7,4 6,23 4,8 2,77
2.! 9,96 ! 11,38 ! 7,45 9,0 8,95 7,3 5,25
3.! 12,32 ! 11,16 ! 5,3 7,85 9,88 8,5 6,8
4.! 12,53 ! 11,37 ! 4,2 7,0 8,62 9,7 8,98
5.! 17,6 ! 10,35 ! 2,62 4,67 7,6 9,43 10,8
------------------------------------------------------------------- I
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F ON DESIGNING FOR QUALITY

L.D. Vajingortin, .P.Roisman
Khmelnitsky Technological Institute, USSR

The problem to ensure the required guality level of products and (or)
technological processes often becomes more difficult due to that there is no
general theory for determining the optimal sets of values of the primary
factors, that is, of the output parameters of the parts and units comprising an
object and ensuring the correspondance of the object's parameters to the quality
requirements. This is the main reason for a number of years being spent for
finishing complex articles of vital importance.

To create this theory, one has to overcome a number of difficulties and to
solve the following tasks : creating reliable and stable mathematic models
showing the influence of the primary factors on the output parameters; finding
of accurate solutions when mathematical models are poorly stipulated; creating
new technique of assigning tolerances for primary factors with regard to econo-
mical, technological and other criteria, the technique being grounded on the
solution of the main problem; well-reasoned assignment of nominal values for
primary factors which serve as the basic for creating tolerances. Each of the
above listed tasks is of independent importance. The present work is an attempt
to gve solution for this problems. The foregoing problem dealing with quality
ensuring in mathematically formalized aspect has been called the multiple inver-
se problem.

1. INTRODUCTION
When creating any new machine, mechanism, technological, medical and other

systems and processes one has to start with presenting the original technical
specifications of output parameters.

The above-mentioned technical conditions are normaly represented as rated
values and tolerances of output parameters. Then, creators face the problem of
designing, manufacturing and finishing up the object so that it could carry out
predetermined functions while preserving the output parameters within the range
specified by the technical conditions, thus providing the required level of
quality.

The values of complex object's output parameters depend on the rated values
and tolerances of great number of parts and units, which form the object and
provide its functional purposes. These units' and components' parameters are
further called as basic parameters or primary factors.

It is well known, that finishing up the object is a long and hard task,
especially for a new one that has no analogues. Of course, it would be mostly
desirable to get quick solutions for the following problems : does the scheme or
construction created meet the specifiend requirements under the suggested
technology; if not, which construction and which technology would satisfy the
objectives?

We have no possibility to analyse the solutions accomplished in diffirent
period. But we have to note, that the steady developtment of sciences and
technique makes this problem up continuosly change, making it more complex but
all the time up-to-date. Its solution is defined by the level of modern scien-
tific achievements. The formalized description of the problem as well as
possible method of its solution are described below.

2. THE STATEMENT OF THE PROBLEM
Let the quality of each object is rated by values of its control output

parameters represented by the vector

L= ( Y Y S ...... Y
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FadTo provide the-required level of quality the following relations snouia b'e]

[y 3 < Y < [Y 3, i=1,2,...,mP (1)
i i i

wherely ]and[Y] are lower and upper limits of the parameter Y , correspondingly.
i i i

They are represented by initial technical conditions.
We've going to look for the solution of this problem as a set of values of

the primary factors, which can be represented by following inequalities:
Ex I < X < EX 3, i=1,2,...,n. (2)

i i

The belonging of the vector to this set has to provide the fulfiling of the
restrictions (1), which are imposed on the output parameters.

We've call the problem, which has just been formulated as the multiple
inverse problem. This term emphasizes that the solution of the problem suggests
the determination of the set of points (region) in the n-dimensional space of
the primary factors. This circumstance differs it from the point inverse
problems, which are traditionally solved in many technical bronches. In the
point inverse problem only one vector of the primary factors and (or) one
collection of model's parameters have to be determined, if the vector 7 is set
beforehand.

3. THE REDUCTION TO THE PROBLEM OF THE OPTIMIZATION
The above mentioned vector Y is completely defined by the vector of the

primary factors X=(X ,X ,....X 3 and the operator
1 2 n

Y = f(X , X s...5X ; B I B I...s B )9 (3)
1 2 n 1 2 k

which carries out connectioh between the said vectors. The structure of T and
the vector of parameters of the mathematical model B , B ,..., B corresponds

1 2 k
to the phisical nature of the object and its functional destination.

As a rule, the industrial, physical, economical and other considerations
allow to indicate the widest bounderies of the set of the possible values of the
primary factors. Then, the relations (3) enriched with these new bounderies can
be presented as a system

Sf X , X ... X ; B , B ,..., B ), i=1,2,...m, (4)
Yi 1 2 n 1 2 k

I C < X < D i=1,2,...,n,

keeping in mind the co-ordinate form of the operator (3).
It should be noted, that the structure of the functions and the sets of

the primary factors' values may be various. For example, one of the primary
factors X can have the descrete or even finite set of values. Then, this fact

i
must be reflected in (4) by such relations as X = I,2,...sN.

i
The system (4) defermines some curved region in the n-dimensional space of

the primary factors. In geometrical sense, if you'd find some sets in the torm
of (2), you would inscribe n-dimensional parallelepiped in the said curved
region.

L This problem has more than one solution due to the fact that countless setj
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Fof this kind of parallelepipeds may be inscribed into the above-mentioned regi- I
on. Every one of them can be entirely determined by two conditions. The first

one comprises the point X = (X , X ,..., X }
0 10 20 no

which is known to belong to the region and corresponds to one of the object's
basic version with these nominal inner characteristics. The second condition is
represented by set of lower - and upper -Q deviations of the primary factors

i i
from their basic values corresponding to the boundaries of the tolerance zones
of the primary factors, that is to the technology chosen.

The following relations are evident here:
X -g < X < X +Rf , i=1,2,...,n. (5)
io i i io i

But not every solution (5) of the problem formulated above can be realized
in practice because of various constructive, technological, economical and other
considerations. The high cost of production or the absense of the necessary
equipment, components, materials, performers of required qualification,
peculiarities of the object. can serve the sourses of the troubles.

These considerations can be analytically formulated by the criteria
expressed through the deviations of the primary factors from their basic values

F = F (6- , 6 ,...96 ,A .. , fl ), i=1,2,...,L. (6)
i 1 2 n 1 2 n

It is evident that of the above mentioned parallelepipeds the most acceptable
for the practical implementation are those, in which the criteria (6) or some of
them are optimized and another of the criteria are added to the restrictions in
(4).

Various criteria of the tolerances optimization are possible. The cost
function is the most important. Sinse this functional dependence on the current
tolerance values is usually unknown, it might be possible to replace it by in
some sense equivalent criteria. For example, it might be possible to demand the
maximizing of every or some tolerances.

Then the criteria (6) will look like following
max (J ,S ,...,6 ,( ,.a ,...,. ) -* max.

I. 2 n 1 2 n

Thus, the problem of providing the pre-determined level of the object's quality
is drawn to the multicriteria optimization problem with the certain
restrictions. The deviationsc andl are to be determined in this problem so

i i

that the restrictions (1) are valid for the region (5).
4. NECESSARY POINTS OF THE SOLUTION

The way to the solution of the formulated problem is connected with some
difficulties. The overcoming of these difficulties has to be the necessary
points of the solution.

4.1. MATHEMATICAL MODELLING
In practice there are cases, when the model required for writing down the

functional part of the restrictions (1) is known. But as a rule, complicated
objects can have either unknown (inaccurate) parameters or unknown structure or
both. Therefore it is necessary to develop an easy-operated approach to the
task of setting functional dependences of primary factors and output parameters
having reliable coefficients reduced to the object model.

The algorithm-creating technique for urgent mathematical modelling can be
ground on the active-controlled influence on the object.

L Let the calculated model of the experimental sample be represented as j
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y = f (X ,X' ,... ,X; B B ,...,B ,,

i=1,2, ... ,L.
At the beginning we suppose that the structures of the functions fi as

known, but parameters B are not.
i

If the output parameters' values and some primary factors are substituted
in (7) then k of unknown values of primary factors and j of coefficients of the
model should satisfy (7) together with the substituted values. As a rule, the
system (7) is not completely defermined (that is k+j>L) and admits of countiess
set of solutions. However, keeping in mind that the object operates and redlly
exists, it would be natural to find the solution fully responsive to the given
object. Hence, it is necessary to complete the problem by means of some
additional experiments. The method of test parameters suggested here is bound to
provide the afore mentioned completion.

To put it into practice, k+j-L additional components should be employed or
varied in the object under examination, or the object should be exposed to the
same number of the test modes of functioning, the modes belonging to the set of
modes specified by initial technical conditions. Thus, the operation of the
object is regulated in active manner. The influence of the said test components
(or modes) in accord with components whose parameters are being identified,
allow the measuring of missing values of the output parameters make the system
(7) complete, and identify the missing factors and coefficients of the model,
that is to find the solution of the inverse point problem.

In case the structure of functions f is unknown we recommend to

i
disintegrate them by series according to any complete system of functions, for
example, the series

E=B + B .X + 7B 'XX +..., (8)
i j ij j jk ijk j k

i = 1,2, ... ,9L
and to identify coefficients by several sequential stages. Ac the beginning. we
suggest to determine the coefficients of linear approximation using required
quantity of test parameters. Then, after employing additional test parameters,
the functions Yi are selected which are adequate to the object. For the rest of
Yi functions the square and higher appoximation are considered. It is easy to
show that the process is converging and the number of stages usually does not
exceed two or three.

Putting the method into practice one has to start with considering the
output parameters of large units as primary factors and to sort out those
vitally influencing the functioning of the object. Then, the functional depen-
dence of sorted out characteristics on the smaller units is ascertained in
similar manner and so on. Tnis approach based on the principle of hierarchy
allows to operatively adjust the model to the object under examination with
regard to the degree of its idealization and functioning conditions, and
eliminates the necessity of the registration and analysis of the inessential
primary factors.

However, the hierarchical principle of modelling can be employed only if
the output parameters of separate units can be measured at every cascade. If
this possibility is not provided by the design the method of multy-cascade
modelling can be used. Let us assume that the interconnection exists between
separate units (cascade) and an output parameter, that is we know the function
Y = f(, , ), where ='(X , X ,..., X ) -output parameter of

L 1 2 s i i il i2 it j
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Fi unit. then, fixing the values of the primary factors of all cascades but one,]
and measuring the output parameter Y, we can create the model of every cascade
and combine them into the common model of the object capable to varying
parameters )f all units LI].

We would like to emphasize that this manner of mathematical modelling is in
itself a particular case of the inverse problem solution.

4.2. PROVIDING THE MODEL STABILITY
However models are practically important only if the faults of the

experimental input information are not likely to cause intolerably large tauits
of the values being determined, that is the models should be stable. In [23 it
is shown how the stability of the model should be determined with regard to all
or some factors, as well as the necessary proof is placed to estimate the
relative fault of parameters identified with the help of linear model:

2
IIAX II / II il C(A)I1A1II / II + [C(A) 3IAAII /iAli. (9)

This estimation, thus, is represented by the number of stipulation C(A)
and the faults of characteristics and elements A being measured. Estimation (9)
allows to explain the decreasing stability of the model while the degree of A is
growing. In other words, it states the necessity to search the compromize
between the desire to give thorough description of the object using large number
of factors and ensuring the stability of the model. The estimation (9) showes
that the model can be regularized not only by way of influencing the A operator,
which in real production environmeots can not always be available for the
various reasons. Not less efficient regularization can be achieved by way of
influencing the Y vector of parameters being measured, which method is based on
the statistical nature of the vector. To achieve this, you have to carry out a
great number of Y measurments,insert the value of the vector into the calculated
model and count the realization of every one of identified parameters.
Mathematical expectations of parameters values calculated on the base of these
realizations are assumed as true values of these parameters. The estimation of
the number of realizations sufficient to ensure the accuracy of the method

2 2 2
L .(C(A),' -G i i + C (A).(0 /11 All ) i5 (10)

1 2
(where - 2 - mean root squere deviations of the vector components and
matrex A correspondingly, t - Student's coefficient) shows that the described
method of statistical solution is efficient when coupled with methods of
influencing the A operator [2].

Estimation (9) places interest in pure practical aspect, since it states
the functional interdependence of economical factors (accuracy of the method and
accuracy of measuring facilities), thus making it possible to choose one of
these requirements to provide the two others set apriory.

5. PROBLEMS, CONNECTED WITH OPTIMIZATION
The concrete optimizing method can be chosen from the sufficiently wide

collection of the detailly developed optimizing algorithms. It is evident that
the results of the criteria optimization depends on the basic version chosen,
i.e. on the point Xo. Here we offer some recommendations connected with it.

5.1. CONSTRUCTING THE REGIONS
We suggest that the algorithm is implemented through making proper regions

spreading from basic point with step-by-step checking the validity of the
restrictions (1). This basic point often can be determined out of physical or
practical considerations. But there are cases when this point is uknown, and the
problem of the seeking becomes very difficult one.

5.2. ON CHOISE OF THE BASIC POINTS
L Because of great number of random and unpredictable situations that may
occur during the manufacturing and exploiting of the object, and due to non- J
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stability of properties of construction materials, the characteristics of the 1
object may be treated as random values. Then we can estimate the true values

using the method of confidential intervals [3], provided that the law of

distribution is known.
For a long time, the normal distribution law or its modification was

considered the best approximation for which the majority of statistical criteria

and estimations can be applied. However, a lot of practical problems have turned

up lately which give strong evidences that the normal distribution law is not so

universal as it was thought. The situations emerging during the study of real

process bear evidences that a good deal of the object's parameters'
distributions deviate from the normal distribution, moreover they often have
more than one summit of the probabilities' function densities. Therefore the
physical essence and new technical schemes of the processes of this sort are
disclosed in [43. The schemes are based on the method of representation of each
random value selection in the form of the set of subselections, combined by some
dominant causes for diversity of values of the quantity under examination. Here
some examples of such kind of situations are illustraited and it is shown that
more often than not the situations of this type can be depicted by Gauss
functions' linear combinations with some weight coefficients Pi assigned to
estimate the contribution of each subselection to total selection of the
realized random values.

f(X; a , a ,...a ; S , S ,..., S ; P , P ,...P)=
1 2 n 1 2 n 1 2 n

-1 -0,5 2 2
S-P.S (2n) -exp ( - (X-a) /26 ). (/2)

i ii i i

In [43, various methods for finding the unknown parameters of the function
(11) are described, depended on the required accuracy of calculation and the
selected criterion of approximation histograms. The values thus determited
define the integral function which in turn makes it possible to write down the
equations for locating the permissible EX) valuei

-1 -0,5 x3 2 2
W = P(X < IXM) = P.S .(2n) • Jexp(-(X - a ) /2S )dX. (12)

i ii .- ,' i i
When processing the experimental data one has employ well-founded technique for
compiling histograms to prevent, on the one hand, the probability of missing
considerable part of the distribution by too large spacing intervals, or having
to deal with unimportant subselections which may -urn up under too small spacing
intervals, on the other hand. It is good idea to start making a histogram with
the smallest possible spacing interval which can be compared with the measuring
accuracy, and to approximize the histogram using function (11) having the number
of additieves equal to the number of spacing intervals. The already known weight
parts which turned out to be less than pre-set probability d= I - W give you
an indication of unimportant subselections joined with the contiguous
subselections. Then, the spacing interval tends to gradually increase, and the
whole procedure is carried out over again untill each weight part is made
comparable withy .

And now the recommendation on the selection of the basic point rest on the
following ideas.As basic point we can select the point belonging to the space of
primary factors and having one of the mathematical expectation as the first co-
ordinate, the mathematical expectation being that of random value depicting the
distribution of the first primary factor. Analogically, the second co-ordinate

Lwill be connected in the similar way with the second primary factor, and so on.J
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5.3. CHECKING THE VALIDITY OF THE RESTRICTIONS
When making regions spreading from basic point checking the validity of the

restrictions (1) during each step of the optimization can be accomplished on the

set of uniformly distributed points belonging to the created region of points.
But in some practical situations this checking technique can be simplified. For
example, when partial derivatives of the functions (3) have invarriable signs
then the checking may be accomplished only for the tops of the region.

5.4. CHOOSING THE OPTIMAL BASIC VERSION
As the number of the basic points can be more than one it is natural to

realise the optimizing algorithm for each of the possible basic versions
separately, and to choose the most optimal of them as regards to criteria (6).

6. POSSIBLE APPLICATIONS
This approach which generally formalizes the problem of optimal 'nsuring of

technical conditions requirements for output parameters of the article or
technological process allows, in the first place, to ascertain the interlinkage
of problems connected with selection of the ob-ect's basic version determineo by

rated values of its primary factors, with the problem of setting disigning and
technological tolerances for them depended on the restrictions of the technical
conditions for the object output parameters. This practicularly provides for the
study of various selection possibilities concerning the already known and
finished units, processes and technological decisions which might be utilized in
the article or technological process being created.

Thus we are granted the possibility of formulating and solving the problem
of synthesizing some of the design versions of articles, having optimal
sensetivity towards manufacturing and operational deviations of their primary
factors, that is we can directly link the selection of the object basic version
to specific features of its practical implementation.

Secondly, this approach allows of formalizing a great quantity of important
promiscuous special problems of design, manufacturing and testing procedures
regardless of the technical branch of application.

The same conditions are capable of procuring recommendations for setting
tolerances for both primary factors of the article as a whole and its separate
units during design, manufacturing and finishing procedures. it allows also ot
carrying out the selective machine assembly by way of sorting out the object's
components and materials by real values of their parameters which are sure to
create the most favourable combinations.

When it comes to serial production it is possible by means of multiple
inverse problem with regard to statistical origin of parameters, to effect
diagnostics dealing with the yield (or the percentage of waste articles) and
allowing of setting conditions providing the technical conditions requirements.

The same approach is effective when solving other types of problems. For
instance, we can check the possibility of attaining the desired values of all or
some output parameters under given design or technological conditions, which
stands for finding a solution of a relative multiple inverse problem. If the
solution doesn't exist or it's out of reasonable limits in designer's or
productive engineer's point of view, that means that the given object falls to
meet the requirements if technical conditions therefore it is necessary to take
to searching for completely new designing or technological decisions based on
different principles.

This approach is also good to cover not only the article as a whole but its
components as well.

Thus the approach under examination is a natural reflection of the set of
real situations emerging at the stage of design, manufactoring and finishing
articles.

7. EXAMPLE s
L To check up the versatality of the above described theory multiple invers
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Fproblem was formuleted and solved, the problem being applied to various branchesl
of technical engineering including:

- providing the strength and air-water proof quality for radioelectronic
elements [53;

- enhancing the stability of the output parameters of the articles of the
secondary radiodetection (airplane answering devices) [13;

- lowering to preset level of vibrating activity of gas-turbine engines and
turbopump assembly unites [2,6-8,113;

- assigning of well-reasoned tolerances for the residual unbalance during
balansing and assembling of rotors [4,93;

- developing of balancing technique for flexible rotors [103.
Each of the above-listed applications is complex enough in itself, and it

would take more time and space than we have,to give their full description here.
Therefore, the present work is an attempt to throw light upon general ways of
finding solutions to multiple inverse problem, and the new approach to the
problem is illustrated by brief example showing the way to lower vibrating
activity of a turbopump assembly unit. We also supplyed the example with
necessary references to thesources containing more detailed description of the
statements placed here.

Turbopump assembly units with high-speed rotors are widely used in varius
branches of industry including rocket production, aircraft building, chemical
industry and so on. As it has been found out that the device-under-test had
enhanced vibration caused by rotor unbalance, the task was to lower the
vibration and the rotor deformation; to put the rotor bearings load within the
threshold of 300 N, in particular, by way of assigning the appropriate residual
values of eccentricity for the most massive parts attached to the rotor shaft.

7.1. GETTING AN EFFECTIVE MATHEMATICAL MODEL
The turbopump assembly unit shaft, rotating in two supporting bearings,

carries two compressor impellers and axial turbine disk. These are very points
of heavy masses fraught with possible unbalance; which consideration served a
basic reason for choosing the "three-masses" calculation scheme shown on Fig.1.

To make the mathematical model of the rotor oscillations, corresponding to
this scheme, more effective, we have accomplished the identification of the
rotor parameters includinq stiffness, and mass and inertia characteristics,
using the method of testing parameters which in our case, are four different
values of the speed of rotation W0 , where j = 1,2,3,4.

J
The rotation of the rotor is described with the help of the integral-and-

differential equations of the bending theory [103. The resulting equations for
the three cross-sections of the rotor link the unknown values of stiffness El,
mass m and eccentricity e with the rotor deflection y (the equations being
created for the two inter-perpendicular planes).

2 2
o• -K" (z,u) + 2k .K'(z,O ) +(.K(z,0)) - e -(o =u) .y, j = 1,2,3,4, (13)
0zz j 1z j 2 j y j j

(i)
where I d (El)

=L=0( (z) =- ' , i = 0,1,2, (14)
i m i

dz

2 3/2
K(z,u)) = y"/(1+(y') ) - is the curvature of the rotor elastic curve,

L z - is the axial co-ordinate of a cross-section.
Then, we accomplished the measurments of the diflection values at the abovJ
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Imentioned points for the whole range of the rotation frequency (in our case ]
0-18000 rpm), and selected four specific values - 14100,15000,15600, and 16000
rpm.

After that, two components of the defections at each of the points (each
component being a projection to one of the said inter-perpendicular planas) were
substituted to the two systems of equations (13).

7.2. CHECKING UP THE STIPULATION AND PROVIDING THE ACCURACY
OF SOLUTIONS

Before dealing with the system of equations (13) we calculated their
stipulation numbers, which numbers turned out to be within the range of
3,2...6,7.

Consequently, r133 the expected error of the solution might be as high as
134% provided that the 15% measuring devices accuracy is achieved. To rise the
accuracy of calculation we employed our statistical method for ensuring
stability of mathematical models [23. In our example, the measuring operation
was carried out over 50 times, the result being that we found the mathematical
expectations of the values and phases of the deflections. The averaged values
were substituted to the equations (13). The solution brought us the following
results:

For the first cross- section:
-6 -6 4 2

e = -5.10 m; e =5,84-10 m;o( = 185,65 m Is
x y 0

3 2
= 270,37 m /s

I
For the second cross-section:

-6 -6 4 2
e = -9,0,10 m;e = 1,7-10 m;0 = 710,67 m /s

x y 0
32

= -247,1i m Is
1

For the third cross-section:
-6 -6 42

e = -6,2-10 m; e = 30.10 m; = 280,83 m Is
x y 0

3 2
= 680 m Is

I
The values ofo( ando( , thus found for each of the cross-sections, made it

0 1
possible to determine the values of the rotor reduced mass and stiffness
according to the formulae

z L z
m = M.exp( S-4 /v dz)/ (o J exp( f(d /.t )du)dz/o( , El =o6 om,

0 1 0 0 0 0 1 0 0 0
where M is the rotor mass.

For the first cross-section:
2 -2

El = 4147 N/m ; m = 0,22.10 kg/m; M = 4,05 kg.

L J
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F For the second cross-sectibn:

-2

El = 15954 N/m ; m = 0,2-10 kg/m; M =2,74 kg.
2 2 2

For the third cross-section:
-2

El 23988 N/m ; m = 0,83o10 kg/m; M = 11 kg.
S3 3

These values of El and m in their turn, allowed us to calculate the
critical frequences of the rotor oscillations for the first and second forms
correspondingly:

n = 16600 rpm, n = 25080 rpm.
1 2

Experimentally measured value was 16100 rpm, which means that the
calculation error did not exceed 3%.

7.3. FINDING PERMISSABLE VALUES FOR ACCENTRICITIES OF THE
IMPELLERS AND THE TURBINE DISK

Let us denote 2i = ., A , ... ,4 - vector, whose coordinates are
1 2 n

represented with the product of disk masses by their residual eccentrici-
ties.

The vector of residual deflection values should satisfy the equation
2 2

W= A + u)-A',A

where A' - matrix of pliabilities o( , created by means of the Mohr method
ik

[123 on the basis of already known values of stiffness El, A - matrix composed
of the products cL .M , where M - mass of the disks.

ik k k
Hence,

2 2 -1

where E is unit matrix.
Now, the equation for the support reactions looks like
R = b .(M.y +,A )ji = 1,2.
i k ik i i i

where b - are known values represented through distances from the disks
ik

fitting planes to the corresponding support plane. The following inequalities
serve here as conditions of the (1) type:

R < 300 N, i= 1,2. (15)
i

The acceptable value of defections is limited to 0,1 mm value.
The criteria of optimization are

- max, i = 1,2,3.
i

It is easy to understand that the basic point A represents the ideal
0

situation, that is when rated values of the eccentricity equals to 0
= ( 0; 0; 0)).

L When trying to create the three-measured expansions around this point it ij
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[quite satisfactory to check the conditions (15) for rotation frequences in the 11.region of critical value 16000 rpm.
We accomplished all calculations resting on the algorithm set forth .n

1133, and found out that the residual eccentricity values should not exceed
0,0008 mm.

Considering that it would be extremely difficult to put this condition into
practice, and costly too (plus loss of balancing during operation possible), it
has been decided that with given construction of the assembly unit the above-
formulated problem has no practical solution and some other method should be
used for lowering vibrating activity of the unit.

Particularly, we suggested and realized the high-frequency balancing
technique comprising the rotor eccentricities identification on the basis of
deflections measured at the three sections, and compensation of the deflections
by counterbalances.

While so doing we determined the values of unbalances Di for rotor
under-test using already known values of the eccentricity projections

2 .2

D M e +e
i i xi yi

Also, orientation of the vectors in relation to a projection plane is
represented by angles

= arctg (e /e )
i yi xi

It's turn out that D = 273 g.cm, ' = 95';
I 1

0 0

D = 2,48 g.cm, 9 = 170; D =30,6 g.cm, V =102,3
2 2 3 3

Fig.2. represents values of the rotor deflection for the section III
experimientally measured in initial state and after applying three correcting
counterbalances used as compensators, whose values have just been calculated.

In general, the balancing procedure gave the following results: the rotor
deflections, withing the range of frequences 2000-18000 rpm. lowerd by 6 times,
vibration amplitude of supports lowered by 4 times, support reactions lowered by
4,5 times, the rotor shaft static strains fell by 3,5 times, while dynamic
strains-by 3,5 times.

8. SUMMARY
The results of the accomplished are characterized with a concrete tendency

for industrial application and can be used for: chosing optimal basic versions
of objects, components and parts; assigning optimal, and economically and
technologically reasonable tolerances for functional parameters of parts and
units being produced; assigning optimal operating conditions for assembling and
adjusting technological processes; accomplishing diagnostic oi technical
condition of objects and their components; identifying real values of the
parameters of objects, and the distribution laws for the errors of creating of
parameters. Finding solutions to this problem allows to cut investments and save
time for finishing objects and controlling their quality in the process of
manufacturing, and on the basis of pre-set criteria, to rate the output
parameters (quality characteristics) of the object as a whole and its components
and parts as well.

L J
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Fig.1. The scheme of the rotor preparation
1. strain resistors, 2. sensors of movements, 3. vibration sensors

2Y____________

100-a
0 2 4 6 8 101

Fig.2. The dependence of the rotor deflections on motion frequency (IIl cross-
section). I - before balancing$ 2 -after balancing
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r OPTIMAL INTEACTION OF INDENTER WITH INHOMOGNEOUS PLATE
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Institute of Continuous Media Mechanics
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ABSTRACT

Consideration is given to a new class of problems dealing
with an optimal design of inhomogeneous plate during dynamic pene-
tration of the rigid indenter. The quality criterion of the pro-
cess is defined by the specific mass of the target, which absorbs
the given kinetic energy of the indenter. Parameters of control
are expressed in terms of mechanical characteristics, i.e. distri-
bution of density p and.the related hardness H across the plate
thickness. The maximum principle of Pontryagin are used to search
for piece-wise continuous control function. With consideration of
impact conditions and characteristics for a given class of mate-
rial an optimal target structure criterion has been estimated for
engineering applica ion.

INTRODUCTION

The problem of searching for mechanical characteristics of
inhomogeneous plate subject to impact of a rigid body has been
stated first in [1) in the framework of theory of optimal control.
This study employs Pontryagin principle of maximum t2) to obtain
an optimal structure for a plate with minimal thickness and
prescribed specific mass. At present a considerable attention is
Pocused on the problem of structure optimization as appli-d o the
case of innomogeneous plate of a minimal specific mass using both
linear HCP) = AP + B [3) and nonlinear H(p) fpp [4) relations.
An approximate approach to the analysis of penetration process,
based on the empirical relation [5) allows to obtain rather simple
criteria for structure optimizaticn.

ANALYSIS

1. FormuLation of the probLem.

According to the applied theory of the plate specific resis-
tance p , penetration of the rigid indenter can be expressed [5)
as

p = H + kpu2  (1.1)
where H is dynamic hardness; k is the shape factor of the indenter
head Cin cas of a tapered head k=sin a, a is a half angle of the
cone opening); v is the current penetration rate.

The equation of motion forLindenter is given as [3]
(1/)M dCv2)/dL = -2n f p(x,L) rCQ)0rC)/8d d , (1.2)

0

where L is the current penetration depth; r(Q) is the expression
or generating line of axisymmetrical indenter; = L-x .s the
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roordinate relative to the tip of the indenter (fig. 1). m

Distributions of density and hardness are assumed to meet the
following requirements

pD, 0 = ( pCx): p < p(x) < p2, (xc_ (O,Lk)) 
HEX 2 = f H(x): H :5H(x) < H , (x_ 1OLk)) (1.3)

We shall restrict ourselves to a class of materials for which
there exists a one-to-one mapping ip of the set 0 in the set Z :
H = 9op), pi4 H,, p24 H2 with a/ap > 0. According to the quality
criterion stated below, materials inconsistent with the latter
conditions are considered inadequate. Further it is assumed that
each of the materials is plastic enough and impact velocities lie
within the range, in which application of the relation (1.2)
proved to be valid.

The boundary conditions for (1.2) imply that the indenter
moves with the initial penetration rate v h=O) = v and reaches
some unknown finite penetration depth Lk for which vCLk) = 0.
We shall concentrate on the case with the plate thickness being
equal to the finite penetration depth b = Lk .

Specific mass of such target is taken as the principle crite-
rion of quality Lk

J = min ( f(x) dx (1.4)

2. ConicaL indenter. Linear reLation H =( p).

Let us consider the technique of applying the maximum prin-
ciple (2) to a number of particular problems. Within the framework
of theory of optimal control the pro lem may be expressed in the
form of' Z (y.= v, y- Is Ulm _,. . phase coordinates... .
L is the time analog )

dy /dt = -E [( C/2) 2 + CA + ky')y-(.d2 /dt = Y3, dy 3 /dt = P, (2.1)
where E = (4n/M) Ctg 2.

In the following it is reasonable to introduce additional
phase coordinates y2 , 3 , since the right side of the equation of
motion involves an explicit form of functional (1.3), leading to
condition d o/dt: -ah/8y°# 0.

The mapping H = p(p) is assumed in the form of linear appro-
ximation

H~?=Ap(x) + B,
A : (H2 2-(p p ) , B p2 - H2 Pt)/(P2 - P1) (2.2)

At the initial moment of time the vector of phase coordinates
remains fixed t = 0 yl, Y 2= 0. The finite vector value

Yk belongs to a smooth, two-dimensional variety 5k Euclidean space
with dimension n = 3

Sk F 2y, ) = Y = 0 (2.3)5k  Fk (Yk , Yk , k k

The condition of transversality for the vector of conjugate vari-
Lables Vp yields two relations v
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t = t ' '7V 0 (2.4)]
The equation for the conjugate variables takes the form

d /dt:Epy2 7,, dvj2/dt=E(A + M y) 71/, dwp3/dt=-Y// (2.5.)

Optimization of the process p',yo requires the existence of
such nontrivial constant W05 0 and vector-function 7(t) with
will allow to meet the maximum condition [2

max hpCt),y(tL),t,p) = h(p(L),y(t),t,p0 ) (2.8)

and transversality condition

h t kpt k, tk,1C tk. 7#( t )qn C2.7)
n

where ( 0, dy2/dt, .dy3/dt 1,t~ t

According to (2.4) the right-hand side of C2.7) is equal
to zero.

Hamiltonian operator is expressed as

h: (W+W 3)p - vJ1E[CIl )Bt2 +(A + kyl)y2] + ( Y C2.8)

Integration of the system (2.5) combined with conditions
(2.4), (2.7) enables one to define behavior of Hamiltonian h in
terms of linear function of p with coefficient § = W +W3.

3. Cy~tndrtcaL indenter with a conic head of the height 6.
Linear reLation H = (p).

The system of differential equations describing the process
is divided into two parts:{ -E [CI/2)B t2 + CA + ky')y 2 ), t < 6

-E [(/IC )B 62 + CA + ky1 )y 2 ), t > 6 (3.1)

dy 2/d Y t < 6  = 3 t), t < 6{/t -- 6pct-6), t > 6 , d* t) = >y - jXLt.) - XLt-6), t > 6,

Hamiltonian operator takes the form

h = C(0+U3)P(t) - w1E[(It2)Bt2 +(A + yl)y2] + 7y', for t < 6

h ( 0o+W ( )t) - (6V- 2_ 3)pt-6) + Y3 -

- v/E[U/ 2)B62 +CA + hly ) I , for t >-6 3.2)

The equations for the conjugate variables is expressed asi( 2 .5) ytE_(o, tL. It is assumed that the value Y I is such thatj



484

Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences
(ICIDES-1ID. Editor G.S. Dulikravich. Washington D.C., October 23-25. 1991,
pondition Lk> 6 is satisfied, automatically.

4. C L.indricaL indenter with a fiat end-face.
Non linear relation H = KCp).

The equation of motion for indenter and Hamiltonian are writ-
ten, respectively as

dy1'/dt = -E [,Cp) + pt (4.1)

h = 7pop- 'VIE[ oCp) + py'] (4.2)
Using differential equation for conjugate variables and

transversality condition gives:
h A= + KP( (4.3)

I = I + y'fZ, 2 fZ, Z = exp C-E fkpdT) (4.4)

For a piecewise-linear relation q(p) (see fig.2) Hamiltonian
is transformed to a piecewise-linear function p with the slope

f -I + (Zpk/CB+Apk))CA+y.), p,(p ,p)1

- + CZpk/(B +Dp k )D+y'), p-p*,p )
For nonlinear relation (p)=B+Ap (A>O,nO) Hamiltonian reduces to

h = A(p) + N ) = I + f IZCy+ Ap1 .v, f: pk/(B+Ap) (4.8)
The conditions assumed for existence of continuous solutions

may be expressed as

(ahlap)fl + A n Cp° "' = 0 (4.7)

(82h/8pF) A n~-A(p~- 0 (4.8)
ip=p . .

Following C4.7) one gets:

S= /An CI/Cn.)

Differentiation o C4. ), using C4.1) gives

ap°/at = Gpo)2 + B/CACI-n)) Cp - ], = E/n (4.10)

RESULTS

Without going into details we shall examine some qualitative
results obtained for a number of special cases.

1. Linear relation H = 9Cp).

From the analysis of the system C2. 1),(C2.5), 2.8) we can draw
the following qualitative conclusions :
L (i) There is an interval (i,, tkj) in which the optimal functi-j
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rn has the form of p0 = p, ' i.e. the rear layer should be made of1
more light and less hardness materials;

(ii) The function pO = p is optimal within the entire
interval Cto,f ], if B > 0;

Ciii) In the case of B < 0 the structure of target should be
double layer with the front lay being made of hard and heavy mate-
rial. In this case a relay-type control is realized.

Similar results have been obtained for the case C3.1),(3.2).
A general phase diagram of the optimal structure is shown infig. 3.Here v is the velocity at which Lk = 6, where 6 the height
of the indenter head. It is seen that the structure largely de-
pends on the parameter B. If the specific hardness Q = H/ is
assumed the measure of material quality, then, according to C .2),
the condiLion B<O identifies the maximum quality of heavy material
p,H). In this case a double layer plate is an optimal structure

for a target. Contrary, when v,> v0 an optimal structure may be
represented by a homogeneous plate made from a light material.

2. NonrLnear reLatton H = opp).

Ci) For a piece-wise linear function HCp) as plotted in
fi .2 the problem is solved for three different materials. The"phase-diagram" of the optimal structure is shown in fig.4, where
a = -(P1P )CP"-P*)/CP*-J) X = CLk/6)2-. As it follows from the
observable scale effect, the optimal structure for a given set of
materials (B,B) depends on the relation Lk/ 6.

(ii) For nonlinear dependence HCp) the function of the opti-
mal control may not include discontinuities. Inequality C4.8) is
valid for n <1 in the neighborhood of t,,t k], O<t*<tk* The
procedure of qualitative estimating the type of solution to the
equation C4.10) may be as follows. The first approximation Cthe
expression in square brackets in C4.10) is constant) follows from

ape/at = -GCp0)2 as (p -' = p-'4 GCt-t . This solution

is found to be exact for B =0. The second approximation has a more
complicated form. The results are shown in fig.5. The position
(coordinate) of the point t. is calculated numerically and may

coincide with the starting point of the process.
The results of present investigation allow to make a prompt

qualitative estimation of the optimal target structure. The best
ratio of layers in a double-layer target may be calculated
numerically by solving the equation of motion for indenter.
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ANALYSIS OF THE OPTIMAL LAMINATED TARGET MADE UP OF
DISCRETE SET OF MATERIALS

Valery N. Aptukov, Valentin L. Belousov

Institute of Continuous Media Mechanics
UB of the Academy of Sciences USSR,
Koroleva st., 1, Perm, 514061, USSR

ABSTRACT

A new class of problems has been analyzed to estimate an
optimal structure of laminated targets, fabricated from the speci-
fied finite set of homogeneous materials. An approximate descrip-
tion of perforation process is based on the model of radial hole
extension. The problem.is solved by using the needle-type variati-
on technique. The desired optimization conditions and quantita-
tive/qualitative estimations of optimal targets have been obtained
and discussed using specific examples.

INTRODUCTION

The problem of optimizing strength properties of inhomogene-
ous targets under impact of tapered conical indenter was first
considered in the study (1). The qualitative criteria of optimal
target structure, developed in this and the following studies (for
example (2)), were based on Pontryagin maximum principle [3]. In
the previous research an assumption was made about existence of
analytical relation between material hardness and density - a
class of so called control functions.

In the present investigation the range of control functions
belongs to some finite discrete set. This suggests using technique
of needle variations (4) when estimating the necessary optimiza-
tion conditions and constructing computational algorithm.

An approximate analysis of penetration is based on the model
of radial hole extension [5].

ANALYSIS

1. Penetration modeL.

The model of radial hole extension is based on the assumption
of radial displacement of material particles under the plane axi-
ally-symmetric deformation, caused by penetration of the tapered
indenter.

According to (5), the pressure acting on the indenter within
the distance [ x- from the front plate surface can be written
as

P = (I 2)pu2{Car/ )[B -/C+e)] + rd/2a z} +

+ L1/2)pv eCe)rar/a + C1/2)o' + (1.1)

L i
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here r = rCQ) is the expression for the generating line of the
axisymmetric indenter, p is the density, e(e) = ln(l+c), e =
E1[asCl+v)], V is the indenter current velocity, is the yield
stress, v is Poisson ratio, E is Young's modulus.

The equation of motion for the indenter of mass M has theform

C1/2)MdCv')/dx = -2n f pf()rCCar/la)d (1.2)

with the initial condition uCO) = v0.0

2. Optimization probLem.

It is convenient to represent the penetration process as a
system of differential equations relative to a vector of phase
coordinates y with u as a-control function

dy/dx = ffyu.) yCO) = (2.1)
and to define Freshet's differentiable functionals by

b
Fo(uC.),bI = f x)dx, C2.2)

0
F EuC. ),b) = y' (b) = 0 C2.3)

Insertion of additional phase coordinates and use of (1.1)
and C1. 2) reduces C2.1 ) to

dyl/cx -2Cly y2+ d y 3)/(d + y4., dy2 /dx = y'- ACx-h)'h,12
dy 3/dx =y'-BCx-hO'h, dy7/dx =2y 7-CCx-h)-h2 , dy'/dx :ACx)-A(x-h),

dy /dx =BC x)-BC x-h.), dy7 /dx = -CC x-h) "h, dy /dx =CC x)-CC x-hO,

y'CO) = 7? t y'C0.) 0 0, C = 2,3,...8), C2.4)
0

where d, Ctg a)-2t d = M d2/r, y'= v11 2 1 I

AWx. 0 CifJ x(0.), pgx) [KEeWx - CX)/CI+6CXD] Ci~f x 0),

BWx.= 0 (if xO0), 0, SCX) [+ KCEWxX] Cif X 0)t
CCx) = 0 C f x<O), p(x.Y BCCx)) CLf x>O),

The size, number and class of materials to be used in the
target layers are specified by a distribution of material proper-
ties

UCX) = us: X-Xs,XS+), S=Tn ), X = 0, X n+1 b
where n is the number of layers. The value of u. belongs to a
finite set U which corresponds to a given set of materials u c U =
(U ,U... U q). Here us is the material in the sth layer, U, is the
material number and q is the material quantity.

L j
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F The stated optimization problem suggests that from all piece'
wise continuous functions uCx) -cU and numbers b >0 one should
choose a control (uOCx), b) which will provide minimum for the
functional (2.2) under the limiting conditions (2.1), (2.3). The
quality criterion may be refered to as a specific plate mass C2.2)
subject to vCb) = 0 Cunder the requirement of arrested indenter).

3. Necessary conditions of optia.zati.on.

A discrete character of the control function range doesn't
allow to generate small variations in the norm 116ull =max 16ul. The

m a, b]
disturbed control may be written in the form

uCx) = { wo' (,3,1)

where mnc [0,b*] is the set of measure zero.
An equation for the system (2.1) is expressed in terms of

variations and the main terms of functional increments (2.2),
C2.3) are given bsy

6(dy/dx) -a/a 6 7Cy,u) - 7(y,u,
6Fo f a lp(w) - p(u°)Idx + ptu°Cb°))6b0 , C3.2)

6F = 6y1Cb0) + 7[yCb°),uO]6b0

Using the Lagrange identity and desired limiting conditions
for the disturbed trajectory one finds an expression for 6b°

6b° = (1/f ,yCbO),uO)],f'i([y7,w) - 7[y,u°)idx C3.3)

where the conjugate vector-function_ W_ satisfies
dV/dx = - af/ay wJ C3.4)

Variation of the minimized functional is written as

6Fouc.)t,3 : f HHCp,u o) - H( ,W,wfdx C3.5)
n.

In order to make the control function optimal it is necessary
to follow the principle of maximum

HCi,u °) = max H(y,i,w) C3.6)

An expression for H is given as

H =D[Via)A(W + w.(x)B~w) + v. 9 x)C(w]P(W), m&(b0-hb0l,

+ L - pCw), flOb hi, (37)

L
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Fwhere D = ptu0 Cb°)/f y(Cb 0 ),u0 , xrz. 1
4. GeometricaL interpretation and quatitative concLusions [6).

n

(i) Function H can be expressed as H = P jiC ,i9oiCw), e are

continuous functions of x. The function H given in 9,is refered to
as a hyperplane of support to a vector-gradient, which defines
direction of increase grad H= (p I,2, n}. From this follows
that H approaches maximum at one of the vertices of convex poly-
hedron Q , which represents a convex shell of the point set
' Cus) ,WsCU, s = T, . The remaining materials of the set U can
be excluded from a further discussion.

(ii) The continuity of paCx) implies that at any vertex of
the polyhedron Q there is a hypercone K the inqrior of which may
contain grad H at slight variation in xc Cx*,x )5; [O,b] and allow
to satisfy the maximum condition. Thus, the optimal plate structu-
re includes the finite number of layers of finite thickness.

Ciii) Substitution of materials is expected to take place at
the contact points x of the hypercone K and one of the polyhedron
edges. It is to be noted here that the immediately adacent mate-
rials may be only there which match the adjoining ver ices of the
polyhedron.

Civ) It can be shown that from the entire set of materials
assumed in the vicinity of the rear surface the preference should
be given to material with minimal density.

5. NumericaL aLgorithm.

Numerical procedure requires insertion of some admissible
control function uCx) 9 U and a small parameter Z which describes
the set of measure zero. Computational algorithm involves the
uniform mesh xihaving the mesh spacing Z. The values of y and V

are calculated at points xS+ z/2 and assumed constant for the

segment [xs ,x+ 3.

Solution includes the following steps:
Ci) The system (2.4) is integrated and yCx) and b are defined

at mesh nodes.
(ii) Boundary conditions for conjugate functions are prescri-

bed at the point x = b and he system C.4) is solved.
Ciii) A new value of u9 on the segment m is derived from

condition HC.,.,u*) = max H(.,.,w); if u? = uCx+ x/2) this step

is repeatsd fo; s = s+1; otherwise, a new control function is
assumed u = u (if xcm 9, uCx) (if xem S) and calculation returns

L J
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Fto step C1)
T e procedure of improving control function proceeds like

this up to the terminal point on the right of the interval. The
process is completed as soon as uCx) remains constant at any s.

RESULTS

A set of materials contain annealed aluminum Ca), aluminum
alloy B-95 (b), annealed titanium Cc), titanium alloy BT-8
(d), steel CT.6 (e), steel 12X2H4A (f). Material properties -are
given in Table 1. Table 1.

Material Density3  Young's Yield Poisson
p, g/sm modulus E, GPa stress o, GPa ratio, v

a 2.8 70 0.06 0.33
b 2.8 70 0.45 0.32
c 4.5 110 0.08 0.30
d 4.5 120 0.83 0.32
e 7.8 200 0.21 0.28
f 7.8 200 0.11 0.30

For the case of dynamic penetration of tapered cylinder the
optimal plate will consist of two materials Cd)+Cb). The relative
front layer thickness of the optimal plate increases with the
increase in a half-angle of the cylinder opening a and initial
impact velocity v0

Fig. I shows the decreased mass optimally P. of homogeneous
plates made up of (b), Cd) and Cf) -materials as compared to the
optimal one. Disadvantage of heavy materials (d) and Cf) decreases
with the increase of vo, since their fraction in the optimal plate
is growing high. At vo5 00 m/s the preference is given to a homo-
geneous material Cb) rather then Cd), while at v0>600 i/s the
prefered material is of d- type.

The results of present investigation agree qualitatively and
quantitatively with data reported in (2]. If instead of material
Cf) one uses steel with the yield stress 1.5 GPa an optimal plate
will consist of three layers. In case of a large choice of materi-
als an optimal target structure will be multilayer. However, the
main qualitative characteristic - a decrease of density and hard-
ness with a distance from the upper to lower surfaces of the
target - remains uncharged.

It is to be noted here, that the usefulness of a soft rear
layer in a target has been already justified but only in context
of fracture behavior of material. From mechanical point of view
the optimality of target structure predicted in [2) and in present
investigation implies its high resistance to penetration while
preserving the same ductile type of cratering.

L
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V ... INVERSE PROBLEMS 1
IN THE DESIGN, MODELING AND TESTING OF ENGINEERING SYSTEMS

Dr. Oleg M. Alifanov, Professor and Chairman of Department
of Space System Engineering and Design, Dean of the College of
Cosmonautics, Moscow Aviation Institute, 4, Volokolamskoye
Sh., Moscow, 125871, USSR

ABSTRACT

Formulations, classification, areas of application, and approaches to solving different inverse
problems are considered for design of structures, modeling, and experimental data processing.
Problems in the practical implementation of theoretical-experimental methods based on solving
inverse problems are analyzed in application to identification of mathematical models of physical
processes, input data preparation for design parameter optimization, design parameter optimization
itself, model experiments, large-scale tests, and real tests of engineering systems. This methodology
provides an opportunity to improve the quality of investigations and to accelerate realization of
research achievement.

INTRODUCTION

The process of design and testing of a new complex technical object can be arbitrarily divided
into a number of steps and sections (Fig. 1). Each of them is very important and essential. If the
problems are posed correctly and their solutions are accurate at each step then the developed
engineering system will be effective and reliable. Very often structures of today vehicles work in
extreme modes, on the limit of structural materials capacity. That is why any mistake made on any
of the stages of design and experimental development could result in a catastrophe comparable to
those of Chernobyl or Challenger.

Operational conditions of technical equipment in many industries become more and more
sophisticated and severe. At the same time, the requirements for reliability and service life as well
as effective technological decisions also grow. Therefore, we need not only to improve old,
traditional methods of research, design and testing of structures but also to develop altogether new,
more perfect ones. To these new methods we can refer those based of solution of inverse problems.
The latest 15-20 years witness permanent growth of interest to them. How can we explain it? First
of all, this approach made it possible to consider real phenomena taking into account non-linearity
and non-stationarity of physical processes characterising today engineering systems. This is a very
important point, since the above mentioned phenomena become determinating when operational
conditions of the vehicles approach criticality. Conventional classical methods can hardly cope with
these difficulties.

The chief advantage of the inverse problems methods is that they enable us to conduct
experimental studies under conditions as close as possible to real ones or to study the engineering
systems directly. Also, such approach enhances the informative value of these studies, accelerating
the experimental works as compared to the traditional methods, and reducing their cost. BesidesL j
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taking into account non-stationarity and non-linearity, inverse problems methods provide an 1
opportunity to analyse account multidimensionality and interdependency of physical processes,
indirect measurements, and real scale of time.

All these advantages and possibilities of inverse problems are of special importance for
aerospace and rocket technology. Therefore some of the first formulation and solution processes
for the inverse problems, in particular, the inverse heat transfer problems, appeared in this area of
application.

GENERAL FORMULATION OF INVERSE PROBLEMS AND THEIR
CLASSIFICATION

All phenomena in nature are characterized by some cause-and-effect relationships, and it is
possible in the construction of mathematical models of physical processes to designate quantities
that are causal characteristics of the process and quantities that are resultant characteristics.

Accordingly, all problems can be classified into two types. In the first, they involve study of the
effect on the basis of given causes. These are direct problems. In the second - study of the causes
on the basis of specified effects. These are inverse problems. Inverse problems have one common
attribute in contrast to the case of direct problems. Their formulations cannot be reproduced in a
real experiment. It is not possible to reverse the cause-and-effect relation physically, instead of
mathematically. For example, it is impossible to reverse the course of a heat transfer process or to
change the course of time. Therefore, in mathematical formalization, this property is manifested in
incorrect mathematical conditioning and must be taken into account in the development of solution
methods and in applying them in practice. When formulating general statements of inverse
problems and choosing the main classes of them, the statements of direct problems are supposed to
be known. Each direct problem (within the framework of an accepted mathematical model) can be
compared with a certain set of inverse problems. All inverse problems can be divided into three
classes on the basis of the general objective: inverse problems that arise in the diagnostics and
identification of physical processes; inverse problems that arise in the design of engineering
products; inverse problems that arise in the control of processes and products.

Inverse problems of the first class usually involve experimental studies. In these cases it is
necessary to reconstruct causal characteristics on the basis of certain measured "output" effect
characteristics. These problems are primary, both with respect to direct problems and with respect
to the other two classes of inverse problems, since they are connected with construction of
mathematical models and determination of different characteristics of the models.

Inverse problems of design type consist in determining design characteristics of an engineering
unit on the basis of given quality indices within certain limits. Required characteristics are causal
with respect to these indices and limits.

In the case of the control, the role of causal characteristics is played by controlling influences
the change in which creates the control action expressed by the system state, i.e. the effect.

It should be noted that there exists a fundamental difference between the two types of problems,
between problems of diagnostics and identification and problems of design and control. In the case
of design and control problems, the widening of the class of acceptable solutions usually simplifies
things, since it is then necessary to find any practically feasible solution that would ensure the
extremum of quality criterion with the given accuracy. At the same time, for identification and
diagnostics problems the wider the class of possible solutions, the worse the situation. Specifically,

L
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[the errors of causal characteristics determined can increase which will make obligatory the use of]
regular methods of solution.

It should be noted that the theory and methodology of solution of inverse problems (that appear
with diagnostics and identification of physical processes) are less developed than those for the other
two classes of problems.

According to causal characteristics required it is possible to divide inverse problems of each
group into various kinds. Most often, MMs of physical processes are based on equations with partial
derivatives. In a general case, four kinds of inverse problems are introduced for them, viz.,
boundary, coefficient problem, retrospective problems, and geometric problems [1,2]. Boundary
problems consist in finding functions and parameters that form boundary conditions; coefficient
problems involve determining of functions and parameters that form part of equation coefficients;
retrospective problems, (i.e. time reversed ones) consist in finding initial conditions; geometric
ones presuppose reconstructing geometric characteristics of a domain or some points, lines or
surfaces within a domain (for examples, determining co-ordinates of a phase transfer boundary or
of a contact line of materials with different physical properties).

Now, if we again look at the block-scheme of development and creation of an important
engineering object (see Fig. 1) we can point out possible and expedient fields of application of new
methodology based on the solution of inverse problems. They are marked by shading. Thus, we can
see that the scope of application of inverse problems to design and testing is rather wide. It can also
be added that there exist a lot of useful applications of these methods for investigation, optimization
and development of different technological processes as well.

INVERSE HEAT TRANSFER PROBLEM

Among the most developed and widely used in practice there are inverse problems of heat
transfer. Consider now their posing.

In correspondence with three main forms of heat transfer let's introduce three groups of inverse
problems: inverse problems of heat conduction, inverse problems of convective heat transfer, and
inverse problems of radiative heat transfer. If combined or complex heat transfer is considered,
corresponding statements of inverse problems will appear.

Let us now, for example, dwell upon a more concrete formulation of the two groups of inverse
heat transfer problems.

INVERSE HEAT CONDUCTION PROBLEMS (IHCP). Problems of this kind are the best
investigated and the most widely used in practice [1-4].

As an example, let us consider a one-dimensional problem of heat conduction in a two-layer
plate assuming that the layer materials have different thermal properties and that in one of them
there occurs a phase transfer, e.g., melting. Layer boundaries b1 (Qr), b2(r), b3() can move with

time as a result of some physical processes (ablation, thermal expansion or shrinking, mechanical
deformation). The internal front of phase transfer il(t) is also moveable.

We'll assume that temperature field T(x, c) in the plate is described by equation system for
generalized heat conduction

C Yx + S., =1,2,3

in domains bV(t) <x < rl(,), ir() <x < b2(,c), b2() <x <b 3(r), respectively. Conjunction condi-

tions on lines rl(t) and b2( ) have the formL
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F 01 T) = T2(rl(T) + 0, T)

x=1()-0 X x=rn()+o

r2(b2(')- 0, t) = T3(b2(t) + 0, t) - R X -T2

x = b2() - 0

x = b2(') - 0 -X3 ax x = b2(r ) + 0

To the system (1) let us also add initial temperature distributions

Tj(x,0) = j(x), j= 1, 2,3

at bl(0) < x < r1(0), "1(0) < b2(0), b2(0) < x < b3(0), respectively, and conditions on the plate

boundaries. As boundary conditions we can regard temperatures

Tj (bj (t), 't)= tj (t), j = 1, 3;

or heat fluxes

IT.

X= qj (t), j =1, 3;j x x= bi (0t

or Newton conditions of convective heat transfer

I T.- aJXx 0i= cx[Tj (bj T(*) ()], j=1,3;

x = bi (0 )

or conditions that take into account body heat transfer with the environment by means of convection
and radiation, and also the heat source that is caused by other processes (melting, sublimation, atom
recombination, etc.)

DT.
T.a x 0,i [Tj = r j (,), r)- T7* (,)] + Aj q -i (7 1( (b. (,c), ') + gj, j= 1, 3.

Here qr is an incident radiant flux; (Y - is the Stephan-Boltzmann constant. Various combi-
nations of the above-mentioned boundary conditions on lines bl(t) and b3(c) are also

L possible.
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F C .efcet j X., K. andthe source S in theeqain in te geeral case canbfunctions1

of co-ordinate x, time r, and temperature T, or any combination of these variables; in the simplest
case they will be constant. Values r, R, oxj, Aj, e-j, gj can be considered as functions of the time and

the corresponding temperature.
In the given problem, the causal characteristics will be volumetric heat capacities Cj, thermal

conductivities X,, convection coefficients K, sources S., movement of boundaries b1, b2, b3, and

phase transfer front 71; volumetric heat of phase transfer r, contact thermal resistance R, boundary
temperatures t1, heat fluxes qj, ambient temperatures 7; absorption coefficients A., emissivities

ej; and surface heat sources gj. The inverse problem of any kind consists in determining certain
values of the sum total of causal characteristics adduced above. Certain additional conditions should
be given. In most cases they will be temperature measurements T(d, 't) =fi(t), i = 1, N in N

stationary or moving points d, of a body; it is seldom that spatially continuous temperatures are

considered.
According to the above-introduced causal characteristics of heat transfer processes, the follow-

ing kinds of inverse problems can be introduced.
The first kind is a retrospective heat conduction problem, or the problem with reverse time - the

finding of temperature distributions in previous moments (in other words - the determining of the
prehistory of the given heat state);

The second kind is a boundary inverse problem - the reconstruction of thermal conditions at the
boundary of the body. A problem zonnected with the continuation of the solution of heat conduction
equation an overdetermined boundary belongs to this type of problems;

The third kind is a coefficient inverse problem of heat conduction - the specification of
coefficient of the heat conduction equation (the identification of heat conduction operator).

Finally, it is possible to introduce one more kind of inverse problem, a geometric one that
consists in finding some geometric characteristics of a heated body, e.g. in reconstructing the
movement of the heat trpnsfer boundary of a body on the basis of the results of temperature
measurements within the body.

Combined statements are possible when causal characteristics of different types are sought
simultaneously. For example, we can simultaneously estimate boundary conditions and tempera-
ture field in the past moments of time in the problem without initial conditions. This problem is a
combination of a boundary problem and a retrospective one. There can exist natural combinations
of a boundary problem and a coefficient one as well as those of a boundary problem and a geometric
inverse problem of heat conduction.

INVERSE PROBLEM OF CONDUCTIVE-AND-CONVECTIVE HEAT TRANSFER FOR A
POROUS BODY [21. One more typical problem is connected with the development and testing of
porous cooling systems of various designs. In these cases it is necessary to have information on the
following characteristics: heat fluxes on blown surfaces; thermal conductivity X, ; internal heat
transfer coefficient oxv of a porous body, heat transfer coefficient a 0 at a coolant inlet into a

porous material. Determination of these values from transient temperature measurements in porous
structure is reduced to the solution of an inverse problem of conductive-and-convective heat
transfer. In the one-dimensional case for a flat layer of a porous material with gaseous coolant, the
MM of heat and mass transfer has the form

L j
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C-F-(x s  7 -- -_ - Tg), x r (0,b), ' e(0, ml;

a~g v
(Pc,) 8 T = ax g ax TS - g), -(3)

X r (0,b, 'e (0, E1;

Ts(X, 0) = Vs(x), Tg(X, 0) = (x), (4)

aTs(b,tr)Xi- x - ao[T(b' ) - go];  (5)

(p v cp)g Tg(b, T)= (p v cp)g To + ao[T3 (b, "t) - T(6)DT (0,,r)
%- aOx q(t); (7)

ax 0 (8)
dp = a(V) + p3(pv)2; (8)

dp
dx 9 9(9)

P Mg

P9= 8314T9" (10)

Here indices s and g mean solid and gaseous phases respectively; cp is specific heat capac-

ity at constant pressure; p is density; v is velocity; capital P is porosity of the solid; a small
letter p means pressure; t is viscosity; M is molecular weight; ox and P are .hydraulic coeffi-
cients; Tgo is initial temperature of the injected gas.

This model contains the energy equations for solid and gaseous phases both the corresponding
initial (4) and boundary conditions (5)-(8), and a modified Darcy's law (9) and equation of state for
the gas (10). The condition (8) is one of the variants of natural boundary condition. It provides for
the uniqueness of the direct-problem solution and, simultaneously, gives results that agree well with
those corresponding to the actual boundary conditions of the first and second kind.

The unknow. causal characteristics include q, X, av , ao0 .

The measurement data are specified with the conditions:

Ts(d,, ) =f(,r), Ct r [0, ,r,], n = 1, N, N -> 1, 0!<- d, < d2 <" dN -< b

EXPERIMENTAL-THEORETICAL INVERSE-PROBLEM METHOD

In an exact formulation, any inverse problem can be written in compact form using an operator
equation of the first kind

Au =f, u e U, fE F. (11)
Here an operator A and right side f are given data. Value u is an unknown. It may be vector,

function, or vecto -function. Let us assume that operator A is continuous, and spaces U and F
are metric.

It is known, that the problem (11) is called well-posed if it meets the following requirements (the
Hadamard conditions):

L * solution of the pr, blem exists for any right side;

L j
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F * solution is unique; 1
* it depends continuously on f.
If at least one of the requirements is violated, this problem is called ill-posed. This is the very

situation, which is observed in solving the inverse problems.
This requires not only the development of special mathematical methods, but also proper

technical organization of the studies. Experience indicated that only with a rational combination of
physical and mathematical fundamentals it will be possible to make effective and creative use of
the methods considered.

We shall use the concept of an experimental-theoretical inverse problem method, by which we
mean an aggregate of studies and developments that includes physical and mathematical statement
of the inverse problem, methods and algorithms for its solution, the necessary technical systems,
and organization of experimental studies.

ON THE HISTORY OF THE MATHEMATICAL SUBJECT-MATTER

A retrospective look at the matter of solving inverse heat transfer problems and utilization of
corresponding methods justifies to the fact that a tendency for rapid development of the scientific
trend observed to-day was of irregular nature before.

The interest and attention shown by investigators to this problem appeared incidentally. The first
formulations and first attempts of solving inverse problems, perhaps, should be related to determi-
nation of historical climate and heat condition of earth's ground layer. These are works of Fourier,
Poisson and Kelvin in the 19th century.

It should be noted that some methods used at present are based on solutions known long enough.
The example of this - presentation of solutions of linear problems of heat conduction through
Dugamel integral (1832) with further numerical inversion of it. However, the corresponding
procedures for determining unsteady heat fluxes appeared much later in works by T.J. Mirsepassi,
one of the first having been published in 1958 [5], in works by G. Stolz (1960) - [6], by J.Y. Beck
(1962 and later in [7,8]), by G.T. Aldoshin, A.S. Golosov, V.I. Zhuck (1968 and later in [9,10]) by
O.M. Alifanov (1969 and later in [11-14]) and by other authors. Regularization of heat state of solid
bodies in the form of exponential law of temperature change was discovered in 1901 by J. Boussi-
nesq. At the same time the basics for the theory of regular heat state was developed by G.M. Kond-
ratiev and later by A.V. Lyikov in the 40s and the 50s. In 1955 the principle of regular heat state
was used by N.V. Shumakov to find non-stationary heat fluxes through a successive inter'a
method [15]. Apparently, it is the first "promulgated" technique for solving boundary inverse
problems of heat condition.

Note that for a particular case of so-called pseudo-inverse heat condition problem W.H. Giedt
in 1955 [16] and O.N. Kastelin jointly with L.N. Bronsky in 1956 [17] published a procedure for
its solution which still finds its application.

A solution of heat conduction problem in the Cauchy generalized formulation presented as an
infinite power series was obtained by J. Stefan in 1890 [18]. This result can be considered as the
first exact solution of a one-dimensional inverse problem with constant coefficients, although for
this purpose it was not used until the studies of A.G. Tyomkin and O.R. Burggraf [19, 20] who in
1961 and 1964, respectively, got similar by form solutions for a series of other linear inverse
problems of heat conduction.

Thus, despite the fact that necessary preconditions for constructing solution of inverse problems

L appeared already in the last century and at the very beginning of the current century, practical j
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[conclusions, nevertheless, have been drawn quite recently. The most active and stable period for1

the development of solution methods and their application falls on the last 20 years.
Let us touch upon history of mathematical studying and solving ill-posed problems.The condi-

tions for well-posed formulation of any problem of mathematical physics were introduced by
J.Hadamard in 1902 [21]. Usually it was assumed that if the original mathematical formulation of
a problem did not satisfy any of these conditions, it was then of no physical or practical sense, and,
consequently, there was no reason of constructing its solution. Gradually, however, the attitude of
mathematicians and physicists towards ill-posed problems began to change. Already in 1926
T. Carleman makes the first attempt to solve an ill-posed problem [22]. In the 30s new investiga-
tions on determination of historical climate have been made by A.N. Tikhonov. In 1943 he
formulated for the first time in a complete form the so-called conditionally-ill-posed statement of
ill-posed problem of mathematical physics assuming a stable solution in the compact class of
functions [23]. This fundamental result, beginning from 1953, is further developed in the works by
M.M. Lavrentiev and by V.K. Ivanov (see bibliography in [24, 25]). To this trend we can refer an
interesting study by F.John in which he presents a method of solving heat conduction equation with
inverse time [26].

The most weightful mathematical result of general nature in the area of ill-posed problem
opening a fruitful direction in the mathematical physics and computing mathematics was obtained
in 1963 by A.N. Tikhonov [27]. It should be noted that very close idea was proposed for solving
linear integral equations of the first kind by Phillips in 1962 [28]. But he did not give any strict
substantiation of this approach. Tikhonov's method of regularization broadened considerably the
bounds of effective practical use of ill-posed problems in various fields of science and technology.
Since that time this method has got intensive development in the works by A.N.Tikhonov,
V.K. Ivanov, V.Ya. Arsenin, V.A. Morozov, A.B. Bakushinsky, V.B. Glasko, V.N. Strakhov and
many other mathematicians (see bibliography in [25, 29]).

At present we have quite a complete mathematical theory of solving ill-posed problems, the
pivot of which being this very method.

The majority of works devoted to a development of the regularization method treat one of its
forms which got the name of a variational method.

Other forms are also possible. Among the most universal is a so called iterative regularization
which is most effectively realized with the help of non-linear gradient algorithms. This quite a
general method has been proposed by O.M.Alifanov [30, 31] and mathematically grounded
together with S.V.Rumyantsev [32, 33]. Important contribution to solving inverse heat conduction
problems by the iterative regularization has been made by E.A. Artyukhin.

Also, it is necessary to mention a book of R. Latt'es and J.-L. Lions [34] in which they suggest
the quasi-inversion method specially for the equations with partial derivatives. A close approach
was suggested by O.M. Alifanov in 1971 for solving inverse heat conduction problem in the
Cauchy statement [13]. It is called the artifical hyperbolization method. But these approaches
haven't strict substantiation.

Simultaneously with the development of the general theory of ill-posed problems and construc-
tion of regular method for their solution a process is observed with respect to the elaboration of
stable and effective in practice methods and algorithms for solving inverse problems of heat
conduction. The initial phase of developing the computational procedures to solve these problems
(till the time when a regularization method appeared in 1963 and, evidently, after another few years

L when the attention of practical workers was attracted by this method, i.e. somewhere in 1968-1970)
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can be named a heuristic regularization and the corresponding methods got a conventional term of'
direct methods. In other words the authors of corresponding algorithms achieved stability and
acceptable accuracy of results basing mainly on the physical sense and, consequently, on the
physical level of rigour. Apart from the above works to this trend in solution of inverse problems
we can refer a trial-and-error method used by L.A. Kozdoba [35] and methods of linear dynamic
filtration being developed by Yu.M. Matsevitiy, A.V. Multanovsky and D.F. Symbirsky [36, 37].
Rigorous mathematical coditions are not yet formulated in the approaches pointed above.

Alongside with heuristic methods, beginning from the end of the 60s and in early the 70s, there
appeared mathematically rigorous methods of solving inverse heat conduction problems.

In their majority these methods are related to the linear problem formulation and constructed
basing on a variational technique of regularization and, later on, on iterative regularization. Just to
illustrate this, refer to some works both on the first [1, 38-41] and on the second [2, 4, 30, 42]
directions. Both approaches, as computational experiments and actual physical tests show, turn out
to be acceptable for solving various nonlinear problems as well [1, 2-4, 31, 43-46].

APPLICATIONS OF INVERSE-PROBLEM METHODS

Numerous scientific and practical results have now been obtained with the aid of the pertinent
methods, Let us briefly dwell on some of them.

HEAT DIAGNOSTICS, Let us start with non-stationary heat diagnostics [2,41,47]. The method
of boundary inverse heat conduction problems can be used in thermal diagnostics of both slow and
fast heat transfer processes. Our investigations have demonstrated that it is possible to reconstruct
heat-flux and heat transfer coefficients with accuracy comparable to that of temperature measure-
ments in the solid body. We have developed differenz principles of one-, two- and three-dimen-
sional thermal indirect measurements based on solution of boundary inverse problems, which have
required dimensionality.

On the basis of these principles. sensing devices for heat diagnostics of high-temperature gas
flows has now been designed, refined experimentally, and put to practical use in various branches
of industry. In particular, these are different types of uncooled and cooled sensors. For example,
similar sensors are used for experimental studies on plasmatrons and gasdynamic stands in which
the gas jets are created by special aviation and rocket engines.

Similar sensors can be used successfilly to measure not only convective, but also radiative heat
fluxes. They are capable of much faster response rates than the Gardon-type sensors widely used
in practice.

Experimental studies showed that heat-flux variations at frequencies up to 100 Hz can be
registered by using uncooled sensors and processing their readings by solving a boundary IHCP.

One-dimensional sensors can be used to measure transient local heat fluxes and local heat
transfer coefficients. To determine discrete fields of these values it is necessary to install a sufficient
number of sensors at "arious space points, for example, at various points of streamlined surface of
a solid body. However, if we go to solution of two-and three-dimensional inverse problems of heat
conduction, we can reconstruct continuous spatial- time dependences of heat fluxes and heat transfer
coefficients on a body surface. In these cases temperature measurements are usually made on part
of a heat-insulated boundary of the body, namely on a line for a two-dimensional case and on a
surface for a three-dimensional case. Sensors with such sensitive elements [2,47] can be mounted
on a model or a mock-up of the object under study, or on a full-scale object, the thermal conditions

L j
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Fof which is determined under test or design operating conditions. Sometimes temperature measure- 1

ments can be conducted within a solid body.
The above methods for indirect measurements are of special value in the diagnostics of

heat-transfer processes under various conditions that do not admit of easy calculation, as in
investigation of the laminar to turbulent flow transition, the interaction of shock waves with
boundary layers, heat transfer in separation zones, streamlining by nonequilibrium flows of
dissociated gas, in the case of heat exchange with boiling, injection of gas or liquids into boundary
layers, and so forth.

It is important to note, that the procedures of simultaneous determination in experiment of the
two or more functions (or parameters) in heat balance equation on body surface are developed
[2,47]. For example, we can find simultaneously a local coefficient of convective heat transfer as
a function of temperature factor cc (Tw/T*) and an emissivity of the surface as a function of its
temperature e (Tw) for known environment characteristic temperature T*(t). Bp,.s of these proce-
dures is special formulations and solution methods of boundary IHCPs.

The boundary inverse-problem method is one of basic for study of non-stationary heat transfer
in the system: solid-gas (or liquid).

It is known, that a heat transfer coefficient, obtained for conditions when an influence of solid
body on thermal state of boundary layer is taken into account can considerably differ from a heat
transfer coefficient, which is determined for stationary conditions. The approach to study non-sta-
tionary heat exchange includes two parts. The first one consists in solution of joint heat transfer
problems, when equations of heat-and-mass transfer both for solid and gas (or liquid) must be
solved simultaneously.

The second is experimental investigations of non-stationary heat transfer and, in many cases, the
experiment still remains the major technique of such studies [48,51]. Such experimental investiga-
tions are based on simulation of natural transient heat-and-mass transfer and determination of
non-stationary heat transfer coefficients as functions of time. It is required not only to correctly
conduct and successfully carry out experimental research, but also (and this is very important) to
find effective ways of processing the obtained data. It was found that inverse problem forms an
effective means of getting the necessary results in experimental information processing.

Use of the inverse-problem methods to process experimental data permits to develop new
approaches to the very formulation of the experiments to investigate heat and mass transfer, making
such experiments more efficient and informative. For example, a new universal procedure has been
proposed for aerodynamic thermal tests to ir,stigate heat transfer in a broad range of Reynolds
numbers using working chambers of comparativ _ly small sizes [52]. This technique is based on the
use of the boundary inverse heat conduction problem, that has made it possible to conduct
experiments under essentially nonsteady heat-transfer conditions with long models mounted in the
working section of the wind tunnel before it is started (which had previously been impossible). Part
of the model is situated directly in the supersonic nozzle. This makes it possible to investigate flows
with uniform fields of the gasdynamic parameters over practically the entire characteristic rhombus,
and this, in its turn, makes it possible to set up not only laminar but also transitional and turbulent
boundary layers on the model.

Another area of application of those methods relates to investigation of temperature fields, heat
flux-fields and also thermal stresses in structural materials, something that is very important for
various types of flight vehicles, engines, and power-generating equipment [47]. It is often found
that temperature sensors cannot be mounted inside of materials due to technological, structural andL j
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FmethdicaF.reasons (because of its violating the integrity, and strength properties of materials]
introducing distortions into the temperature field and into the field of thermal stresses, and also due
to the difficulties in providing good thermal contacts of sensors with the material, etc). It is then
necessary to reconstruct the temperature field from temperature and heat-flux measurements made
on part of the boundary of the body, i.e. to solve the corresponding inverse problem. This approach
has been used, for example, in investigating the hot strength of graphite structures, and has
produced good results.

New and important field of use of methods based on solution of the inverse problems is
experimental-theoretical studies of heat-and-mass transfer in porous mediums, in particular, porous
cooling systems. These systems are an effective means of heat protection. It is performed by the
coolant supply through special inserts made of porous materials. Coolant here is gas or liquid. In
the course of experimental studies of porous cooling systems it is necessary to determine non-sta-
tionary thermal boundary conditions on the surface of a porous body and to identify heat effect of
coolant injection into a boundary layer. The direct measuring of values included into the boundary
conditions of a heated surface is either very difficult or downright impossible, but the temperature
on the opposite surface of a solid matrix can be measured. In this case we are faced with the
necessity of solving a boundary inverse problem for an equation system for heat-and-mass transfer
in a porous structure [2,53,55]. For a gaseous coolant appropriate formulation of inverse problem
was considered above.

Of practical importance is the problem of studying the heating and heat destruction of thermal
protective materials, including the investigation of reducing convective heat transfer due to
injection of gaseous products from the ablated surface. The main types of measurements in
experimental study of such materials are temperature measurements within the bodies (usually by
means of thermocouples) and on the external surface (by optical methods) and measurements of
the ablation rate. The processing of measurement data can be performed by methods based on the
solution of inverse heat conduction problems.

The following example is referred to a determination of thermal properties of different medium
and materials, in particular, heat-protective materials interacting with high-enthalpy gas flow.
Thermophysical measurements, based on classical techniques, for many materials can be made only
at temperatures and rates of heating much less than those in reality. To avoid the above discrepancy
is possible simulating the required conditions of specimen heating on special test facilities plas-
matrons, in the jets of rocket engines and other) with a successive treatment of temperature
measurements by coefficient inverse problem [56-64]. That is, using some mathematical model of
heat transfer in the material (in the simplest case - a heat conduction equation) we are to find a
required value (or values), for example a heat conductivity as function of temperature, "adjusting"
the calculated temperatures to those thus measured. Thermal properties thus obtained correspond
to the heating conditions brought near to real conditions in which the material operates. In many
cases, if properties of decomposing materials are investigated, it is necessary to develop inverse
problem procedure for mathematical model that takes account of the non-isothermal decomposition
kinetics.

Another field is the estimation of contact resistances which characterize the heat transfer
between the connected parts of structures as well as the prediction of their change in the course of
time, in particular for structures, where there is a great number of bolted and riveted joints, hinges
and so on. For thermal shields it is necessary to know the resistance of adhesive film, and this
problem often can be interpreted as the problem of contact resistance specification. The method ofL
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Fboundary inverse problem can be successfully applied to processing the results of specially 1

conducted experiments in solving the problem of contact heat transfer, non-stationary conditions
included.

The next field of application of inverse problems is diagnostics of friction. In mechanical
engineering, the investigations of friction and wear of different movable joints are of great
importance because machines reliability and overhaul period depend on them. Besides, these
investigations permit to reduce friction losses and, consequently, increase machines efficiency.
Today, bench tests is very often the only means to test experimentally a movable joint. But they
can not substitute service tests which provide the most complete data on a joint performance in
operating conditions. At the same time, seivice tests of friction units rarely give data on friction
losses. Thus, for example, the existing methods of direct measuring of friction torque, charac-
terizing work in friction, rest on the use of special elastic elements, i.e. torsion devices. Their lay
out presents a problem even in bench tests. In operating conditions measuring of friction torque
with these devices is often impossible. So, work in friction (friction torque) is defined through other
measurements well correlated with the sought-for quantity. The most suitable are temperature
measurements not requiring complex equipment. Using these data it is possible to reconstruct heat
release in friction zone. Almost all friction energy (85-100%) goes into heat. Thus, it becomes
possible to estimate work in friction, and, accordingly, friction torque, using the data on heat
release. Heat release itself may be found by solving inverse heat transfer problem with known
temperature measurements.

Using this approach and iterative regularization, appropriate procedure for tests of the sliding
bearing was developed and used in practice [65]. Obtained results of 10-15% agree with the results
of torsion measurements.

The above applications concern diagnostic and identification problems. General procedure for
structural and parametric identification of physical processes, based on solving ill-posed inverse
problems, is presented in [66].

With the help of inverse problem principle various design problems also may be solved. The
problem of the optimal design of a multilayes heat shield is considered. It is required to determine
the design characteristics (the number, materials and thicknesses of the layers) of such shield, one
of whose boundaries as well as the corresponding layer is subjected to external transient heating
and ablation, while the other is subjected to cooling by the circulating heat transfer agent. The total
mass of the shield is the criterion for the quality of the heat protection. The optimization problem
has a number of restrictions taken into account, which are dictated by the requirements of the
admissible temperature conditions for the layers, the specific heat of the coolant, the thermal
stresses, and so on. Therefore we have a combined coefficient - geometric inverse problem of
thermal design type. This problem is solved by the iterative method [67,68].

At present methods based on solution of different inverse problems find their application not
only for model thermal experiments and parameter optimization. They are also used for full-scale
tests, in particular, for diagnostics of heat transfer boundary conditions and heat loads on different
real structures and for identification of thermal properties of heat protection and heat insulation
materials in real operating conditions.

One field of application of these methods is thermal-vacuum test ofspacecrafts. Such approach
permitted to create new effective procedure of testing. It includes the following three main parts:
special preliminary testing of object for the purpose of identification and correction of mathematical

L J
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-Fmodels of heat transfer processes in test object; choice of thermal simulator mode with help of1

solution of the inverse problem of control type; regular testing itself.
Very important fields of applications of inverse problems are different nature (real) experiments

and tests, for example, flight tests. In many of these cases, such approach is the only possible means
for obtaining necessary quantitative information about heat conditions of vehicles under test, since
other methods turn out to be unfit. Appropriate procedures and technical devices were created and
used for study (in flight experimental conditions) of porous cooling system, reusable thermal
protection, thermocontrol coating of space vehicles and strength of structures of flight vehicles.

For example, developed methods were applied to study of thermal modes of reusable heat
protection of "Buran" aerospace vehicle. The flight tests were conducted on special automatic
re-entry vehicles "Bor-4" series. In these cases heat diagnostics was carried out in the following
ways:

- estimation of heat fluxes on the surface of the tiled thermal shield;
- quality analysis of the effects of physical-chemical reactions on the thermal shield surface with

its catalytic properties being changed;
- evaluation of heat state of the thermal shield surface in the tiles gaps;
- estimation of the inner heat state of the tiled thermal shield material under the heating in flight

conditions.
Unique results were obtained by means of these methods in the course of such tests.
The next important example has to do with diagnostics of radiative characteristics of thermal

control coatings of spacecrafts. Of great interest is an experimental determination of the solar
radiation integral absorption factor and integral semi-spherical emissivity of external surface in the
conditions of actual operation of the coatings. In particular, such studies are conducted on vehicles
of "Cosmos", "Meteor", "Meteor-Priroda" series. In the result it was possible to construct a
mathematical m' del for varying the radiation characteristics of coatings in the course of time and
predict these variations for longer time of operational use of the vehicle, as compared with duration
of experiment.

Besides model experiments, design and testing of technical units inverse problems find their
fruitful use in investigations, optimization and operating diagnostics of various technological
processes. Just for example let us touch upon some of them.

Procedures for determination of heat loads by inverse-problem solution may be very helpful in
experimental study of liquid cooling in continuous casting and heat-treatment of metals. Such
cooling removes heat flows of rather high specific rate - up to 100 mWV/2 with realization of high
velocity non-stationary processes. Complex thermohydrodynamic processes occurring while
spraying liquid over a high temperature surface cannot be described so far with the required
accuracy by means of theoretical methods. So, such kind of investigations are still described
through experiments. The experimental data are obtained and genera!ized by solving inverse
problems of heat exchange.

The direct estimation of local rates of the removed heat flow during liquid cooling and with
boiling is hindered by rather great change of surface temperature rate. Standard heat flux meters
have time constant about I sec - two orders more than process characteristic time. Effective
measuring means for these purposes may be obtained on the basis of boundary inverse problems
principles [70].

Another example is the thermofretting of metals. This is a progressive trend in heat-treatment

L technology for critical steel products that operate under heavy mechanical loads, such as the disks
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Fand rotors of large power-generating steam turbines. It is now impossible to investigate and 1

optimize the thermofretting process without experimental testing, and this is a typical area in which
inverse-problem methods can be used to good effect.

Inverse problems of structure mechanics. Problems of reconstruction of loads on the structure
by its stress-deformed state parameters as well as problems of determination of the fields of stresses
and shears in a given part of construction elements by stresses (shears) values on a part of its surface
fall under the class of inverse problems of mechanics of deformated solid [69]. An analysis is made
of corresponding methods and their practical application for investigation of strength of space
vehicles during flight tests.

Of course, the range of possible practical uses of the inverse-problem methods is considerably
broader than that indicated above.

To summarize, we observe that these experimental-theoretical methods not only have a broad
spectrum of important applications, but they are distinguished of high information yield and enough
high reliability. For more complete acquaintance with existing today methods and algorithms of
solving ill-posed inverse problems and their different applications refer to the following books
[1-4,25,29,34-37,41,48]. Also, it can be recommended to look through the numbers of Inzh.Fiz.Zh:
vol.29, no.1, 1975; vol.33, no.6, 1977; vol.39, no.2, 1980; vol.45, no.5, 1983; vol.49, no.6, 1985;
vol.56, no.3, 1989 (English translation in Journal of Engineering Physics - bibliography data is the
same). The numbers were dedicated specially to those problems.
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ABSTRACT

Experimental-computational methods for estimating characteristics of
unsteady heat transfer processes are analysed. The methods are based on
principles of distributed parameter system identification. Theoretical basis
of such methods is numerical solutions of nonlinear ill-posed inverse heat
transfer problems and optimal experiment design problems. Numerical techniqes
for solving problems pointed out are breafly reviewed. The results of
practical application of identification methods are demonstrated when
estimating effective thermo-physical characteristics of composite materials
and thermal contact resistance in two-layer systems.

INTRODUCTION

In creating different thermally stressed structures and systems, of wide
importance are mathematical modelling and simulation of heat transfer
processes occurring inside them. The use of mathematical simulation allows to
predict a trermal state of the dynamical system under consideration in wide
range uf its operational conditions and to estimate the effect of different
farors ,i n the system behaviour. Accurate enough thermal state simulation for
rlte system is one of the main procedure, when optimizing thermal conditions
and design parameters.

The thermal mathematical model of a system or a process analysed is
tormed basing on the heat and mass exhange theory (see, e.g.[I]) aria it,
contains a set of characteristics. Characteristics are usually determined by
experimental way. By this, most of them can be determined only by means of
indireut measurements. In this case a mathematical model is used which is of
the given structure and usually contains unknown constant parameters.

Ic should be emphasized that in determining characteristics, methods of
carring out experiments as well as methods of data processing should consider
peculiarities of mathematical models used to simulate thermal conditions . But
this factor is not taken into account in overwhelming majority of traditional
methods for determining characteristics. Simple mathematical models and
severely controlled heating conditions for specimen are used in these methods.
Traditional methods for determining of thermophysical characteristics can
serve as an example [2]. As the result, a desired accuracy of determining
charaL'cerisrics is not provided. In this case mathematical simulation of
thermal conditions is also realized with the low accuracy.

Shortromings of traditional methods for determining characteristics are
oispiayed when analysing a wide enough range of thermal processes. In
particular, one can refer to such processes heat transfer in composite heat
shield and thermo-insulating materials, contact heat transfer in
high-temperature power plants, heat and mass exchange when materials and

struccures interact with high-enthalpy homogeneous and heterogeneous flows ana
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RTany others. That is why one must develop and implement new methods of study,
providing trustworthy information on different characteristics of thermal
processes analysed.

Since characteristics should correspond to the mathematical model used,
their determination should be considered as a part of mathematical model
building by using experimental data. This procedure is called identification
problem [3]. When determining characteristics, the mathematical model
structure is supposed to be known. In this case one can speak about parametric
identification problem [4] or parameter estimation problem [5]. Unsteady
thermal processes are referred, as a rule, to the category of dynamical
distributed parameter systems. This allows to use experimental-computational
methods for determining characteristics based on the main principles and
approaches of distributed parameter system identification [6].

I DENTI FI CATI ON OF HEAT TRANSFER CHARACTERI STI CS

In identifying heat transfer processes, problems of determining
characteristics in mathematical models with given structure are formulated as
coefficient-type inverse heat transfer problems [7]. Methods and algorithms
for solving these problems are the effective means for determining
characteristics of different thermal processes and systems [8,9]. In spite of
achievements available, the inculcation of methods based on solving
coefficient inverse heat transfer problems was not very active, till recently,
because of the following. The fact is that the solution of such problems
strongly depends on the used scheme of temperature measurements [4,10.11]. It
means that quite different results can be obtained for the same heating
conditions of the system analysed but for different number of temperature
sensors and their locations. That is why almost every
experimental-computational study is followed by labour-intensive analysis of
thrustworthvness of the rusults obtained on the basis of numerous parametric
computations (See, e.g., [12]).Preliminary optimal design of temperature
measurements and other experiment conditions allows to reduce considerably the
volume of work. The combination of methods and algorithms for solving inverse
problems and experiment design problems is the methodological foundation of
identification procedure. This combination forms the new approach increasing
essentially an efficiency of thermal studies and determination of heat
transfer characteristics.

The voluminous literature is devoted to methods and algorithms for
solving inverse heat transfer problems. One can point out, in particular,
monographs [4,5,13-20] and bibliography inside them. Most of works available
deal with the solution of boundary inverse heat conduction problems, in which
thermal boundary conditions are determined by using unsteady temperature
measurements inside the body analysed. The considerably lesser number of
publications is devoted to solving coefficient inverse problem (see, e.g.,
bibliography inside [4.14,16,18,19]).

Algorithms suggested at present for solving coefficient inverse problems
are based, in overwhelming majority, on minimizing the residual functional.The
minimization procedure is built by using an exhaustive method [14,21,matching
method [18], method of optimal dynamical filtration [19] and gradient
methods. To compute a gradient of the residual functional, the following
techniques are used: finite difference method [22]. sensitivity functions [23]
and a solution of boundary-value problems for conjugate variables, which are
written down for linearized direct problems [24-26], as well as for finite
difference analogues of direct problems [27]. Efficiency of these techniques
is mainly analysed in application to coefficient inverse heat conduction

[problems to determine thermo-physical characteristics depending on j
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Fe' perature', The 'analysis' of recet publications [26) says tht the most
I"popular" techniques for solviniq coefficient inverse problems are based o
iterative regularization principle [4].

In contrast to the number of publications on inverse heat transfer
problems, works on optimal design of thermal experiments are not very

numerous. One can see the bibliography on this topic in works [4,13].
eLthods for solving experiment design problems are based on a

finite-dimensional approximation of unknown functions. In this case the
inverse problem is reduced to determining the vector of unknown parameters.
Then, properties of Fisher's information matrix are analysed, elements of
which are computed by using sensitivity functions. The elements depend on
experiment conditions (see, e.g. [4)).

The determinant of the information matrix or the square root from the
minimum eigenvalue of this matrix are used as the criterion of an experiment
quality. Experiment conditions are chosen by exhaustion of a given set of

possible conditions [29), by the parametric accuracy analysis of the inverse
heat transfer problem solution (25) or by solving optimization problem
(30,31).

At last, only several publications are available on analysing the complex
procedure of heat transfer processes identification and on simultaneous usage
of techniques for solving inverse problems and experiment design problems.
There exist isolated works devoted to design, carring out and data processing
of real experiments (32,33].

The main goal of this lecture is to demonstrate the efficiency of
parametric identification methods through the examples of
experimental-computational investigations of heat transfer processes.

INVERSE HEAr TRANSFER PROBLEMS

Many different particular inverse heat transfer problem statements are
considered in practice. To describe general features of methods and algorithms
Tor solving ill-posed inverse problems and to avoid details it is convenient
to use the general inverse problem formulation in the operator form.

Let us consider an unsteady heat transfer process or thermal system,
state model of which has the form of a boundary-value problem

L x, + ,T, AL T , T I =0. X eQ , T 0, T
Ot Ox 0x

T(x,O) = T (x), x S Q = + F 2)
0

x. --T. AL ,u = v(T,, x=F ( 3
ox

where Lt" is a non-linear operator; B (- is an operator of bounda y
conditions; T is the state variable (temperature): T is time; x is space; u is
vector of cnaracteristics of the system analysed; vtr) is an external action.
In the model (1)-(3) the state variable T =an be a scalar or vector function

Lof space and time. j
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The model (1)-(3) is a direct problem, and under given values for1
lexternal action v(r) and vector of characteristics u permits to predict the
system s thermal state. If vector u is unknown or given with low accuracy, but
there is some additional information about the solution of the problem
(1)-(3), then an inverse problem appears for determining vector of
characteristics u. The additional information is formed on the basis of
measuring the state variable in a subdomain of 0. When the state variable is
temperature, measurements are usually carried out in some number N of separate
points of the domain 0

T (X.,T) = f.(T), i = 1,N ( 4)meas 1 1

where X . i = i,N are coordinates of temperature sensor locations. The
inverse problem is to determine u from conditions (1)-(4). By this, the
form of operator B as well as the number of sensors N are chosen so that we
can provide uniqueness of the inverse problem solution [4].

fhe state model (M)-(3) can be treated as the transformation Au of a
space of characteristics into a space of the state variable in measurement
points. As the result of measurements a vector-function f = ( f (T),

f { Tr,...,f NtT)) is formed. The inverse problem is to determine u so that

computed state variable in measurement points is equal to measured values.In
this case the inverse problem (1)-(4) can be presented as a non-linear
operator equation of the first kind

Au = f, u E U. f c- F, A: U * F 5

where operator A is constructed on the basis of the model (1)-(3); U is the
solution space: F is the space of vector-functions being measured.

The main distinction of inverse problems is ill-posedness. The inverse
operator A- can be unlimited and small errors in the right part can lead to
large deviation in the solution. So, to solve inverse problems it is
necessary to use special, regulating methods [34).

It should be noted that the solution space U in the inverse problem
k5) is constructed by taking into account constraints arising from physical
point of view. For example unknown characteristics must be positive in many
cases.

To solve coefficient inverse problems the iterative
regularization method has displayed quite a high efficiency. This
method is based on minimizing, by means of gradient methods of
the first order, residual functional

J(u) = II'u- f I2 (6)
F

The regularization parameter is the number of the last iteration, which
[is determined in the process of problem solving from a regularizing condition j
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.27

wnere 62 is the error of input data, calculated in space F.
It should be noted that for linear ill-posed problems the iterative

regularization method received severe mathematical substantiation. in a
non-linear case such substantiation is not available. However, extensive
computational experiments confirm high efficiency of this method for solving
non-linear problems as well (see, e.g. [4,16)).

In constructing algorithms for solving coefficient inverse heat transfer
problems, when the unknown characteristics depend on the state variable, a
common approach is the parametrization of functions sought for, in
particular by means of cubic B-splines [35J. The solution is sought for as

m

z(T) = E pkeOk(T) (8)

where z(1) is an unknown characteristic; Pk k = 1,m are constant

parameters; Pk(T), k = 1,m is the given system of basis functions. The

inverse problem is to determine a vector of parameters u = ,p,...,pM

the composition of which includes coefficients of approximation of all
functions sought for. An iterative procedure of minimizing the residual
functional (6) by using the method of conjugate gradient projection is built
via formulas

P = P v  0k +  ,gr , r = O,1,...,R, (9)

r (r)l g r-i

gk k rgk

mm

P ,= 0 = Cr) 'Cr-1) (r) M '(r-1) 2

'0 r " - "kk0/ k

where P is the operator of projecting on the multitude W of admissible

solutions; R is the number of the last iteration. The calculation of
gradient components J k' k = 1,m is accomplished through the solution of

a ocundary-value problem for conjugate variable [9]. An approximate method is
used to realize the projection operation [36).

A descent parameter is determined from the condition

= a min J [P(ur+ ,gr)] IC'
r gfru

her ,. =] ,19 T. If one characteristic is unknown in the
here = [ l 'gz "''g
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of known methods, such as a "golden section" method [36). For multiparameter
inverse problems, of much greater computational efficiency is the technique
based on representation of a descent parameter r as a vector value [757].
Various modifications of this technique are described in (4]. Parameter 2- is

r

determined for unconstraint minimization procedure and then projection
operations are successively realized for all unknown functions L38]. It
should be emphasized that in many cases good results have been obtained by
using unconstraint methods for minimizing the residual functional. The high
capacity for work of such iterative algorithms for solving coefficient inverse
problems is demonstrated, for example, in [4,10,24,39,40.

OPTIMAL EXPERIMENT GESIGN

The input data for solving the inverse problem are formed basing on
information obtained in the result of corresponding experiments and
measurements. Under formation are two groups of values. The first group
includes values displayed in model (1)- (3), determining the conditions of an

experiment: a dimension of a specimen 0 in study, duroation of an experiment
r , initial distribution of a state variable T (x), external action v(r).

mn 0

Combine these conditions to vector

w Q,- ,T (x),v(T) 1 ( 11
.n 0

The second group of values characterizes the conditions for measuring a
state variable and in the case under consideration includes the sensor number
N and vector of their space positioning in the specimen X = [ X , X ...I

X ]T These values make up a scheme or a plan of measurements
N

S= C N,X ) ( 12

In total, vectors w and I determine a plan of the experiment

77 = ( w, ) ( 13)

The inverse problem (5) can be solved, generally speaking, with different
plans of the experiment 1 . But the results of studies have shown that quite
an arbitrary selection of elements of the experiment plan (13) can lead to
large errors in the inverse problem solution [4,10,31,41). Hence, a problem
arises on optimization or optimal design of experiments in identifying thermal
processes with the aim of providing maximum accuracy for the unknown
characteristics determination in the assumed mathematical model (42). A search
for optimal plans of experiments leads to the necessity of solving extreme

[ r o b l ems J
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Ti =Rrg max, (n),. rrE ( 140

where t(rr) is the quality criterion of the experiment, characterizing the

accuracy of solution of the inverse problem under analysis; [l is a set of
admissible plans.

The accuracy of solution of the inverse problem (5) is determined by
properties of the Freshe derivative A' of operator A, reflecting the nature
of error transformation of the right part f into errors of solution u (43]
. It is possible to show [4] that the above properties of A' are
characterized by eigenvalues jk, k = 1,m of matrix

M = 0 j.k' Ij,k = 1,m ) ( 15

N T

where D j= 1 2 Y M .(T) e i(X .oT) e k(X ,T )dT
j~k N o k

X. ITJ, i = 1,N are weight functions, giving a possibility to consider the
L

presupposed errors in the measurements of a state variable. ek (X,T) =

OTtxT)/cp I ' ,k = 1,m are sensitivity functions. For the inverse problem (5)

matrix 1Q) coincides with the Fisher's normalized information matrix,
widely used in the theory of experiment design [44] . The following values
can be used in particular as an optimization criterion: a square root from the

minimum eigenvalue T and a determinant detM =k=. k. The computational

experiments carried out showed high capacity for work of the given criteria
(4,32,33,41J . A set of admissible plans is formed with regards for the
conditions of uniqueness of solution of the inverse problem and with
constraints, characterizing the capacity of the experiment equipment used and
that of measurements [4) .

To determine the elements of matrix (15) it is necessary to calculate
sensitivity functions e k(X,T) , k = l,m . These functions are calculated

using a boundary-value problem obtained as the result of diferentiation of

relations (1)-(3) through parameters Pk k = l,m . Here, due to

non-linearity of operators L and B, sensitivity functions depend on the
vector of unknown parameters u. Hence, it is possible to construct only
approximate, locally optimal plans of experiments involving apriori
information about vector u [44). The studies carried out show that apriori
information, usually available, gives a possibility to get local-optimal plans
close enough to exact plans [4,41,46).

Using described methods for solving problems of optimal design of thermal
experiments there have been developed corresponding computational algorithms
based on the scanning method [45] and on the optimal control theory [31).
Their high efficiency is shown. for example, in [4,32].

L
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F DENTI FI CATI ON OF EFFECTI VE THEROPHYSI CAL
CHARACTERISTICS OF COMPOSITE MATERIALS

The latest two decades witness constant increase of publications devoted

to methods and algorithms for solving coefficient inverse heat conduction
problems and to their application. In fact, the first results of
investigations in this field were published in 1963 [47,48]. The main part of
subseouent works dealt with suggesting algorithms and analysing their
computational efficiency. Experimental-computational studies are considered in
considerably smaller part of publications.

One of the main goal of investigations is to create a reliable
non-stationary method for determining effective thermophysical characteristics
of composite thermal protective materials at high temperatures [39,49]. It is
clear today that such methods should be built by using identification
approaches icluding the solution of coefficient inverse heat conduction
problems and experiment design.

To illustrate the practical application of identification methods let us
consider determination of the effective thermal conductivity for
glass-reinforced plastic on silicone binder, heated by a high-enthalpy gas
flow (32].

To realize a complex procedure of identification there has been conducted
a number of experiments with a one-side gas-dynamic heating of flat specimens
of the material of 20 mm thickness. Temperature measurements at different
depth from a heated surface were taken by means of thermocouples. The nominal
heating conditions and duration of the experiments were given beforehand.For
control of its reproduction in the experiments and for formation of a boundary
condition of the first kind, measurements have been used by the thermocouple
nearest to a heated surface. The location of these thermocouples in specimens
was further -onsidered as the origin of a solid axis x . The indications of
thermocouples located at the biggest distance from a heated surface served as
the second boundary condition of the first kind. The location of thermocouples
was determined by means of X-ray radioscopy. All subsequentexperiments showed
approximately the same results, heating conditions of all specimens being
similar to each other.

The mathematical model of heat transfer process in the material looked
like a boundary-value problem for the non-linear heat conduction equation

crF) r _ (UT) OT), 0(x<L Qsr5( 16
dr dx O m

T(x.0) = T tO). 0 _ x < L ( 17
0

TtO'.r) = v (T) ( 18

T(I.-) = v (T) 19
2

The results of temperature measurements of 4) type in the internal
points of interval (OL] served as input data for solving the inverse
roblem on determination of function ',(T) The inverse problem analyzed has a
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Fini'que s§olution at N 1 [4].Optimalplanning of an experiment was made fist. Since its heating+

conditions and -time- were given, the c6ntrol over the experiment quality --was.
carried out only by fneans, of selecting an optimal plan of" measurei,,ents+ (12).
For this purpose an extreme problem of measurement planning has been solved

Arg max T [M( ,X(T))], -  ( 20

where -(n.X):N -> 1, 0 < X < 1. i=.N

To solve problem (20) there has been used a procedure of work (45] .The
boundary conditions of the first kind (15),(16) are shown in Figure 1. The
dependence X(T) obtained by traditional method served as apriori information
about the unknown function.' Function X(T) was approximated by a cubic
B-spline of (8) type with "natural" boundary conditions [35] with the

parameter number m 4. So, vector p = ( Pkk=l.4 ] was unknown. Sensitivity
functions 9 (xr.T k =-1.m were determined from a solution of

boundary-value problems obtained by differentiating relations (16)-(19)

through parameters pk' k = 1,4.

The results of solving of a problem on selecting an optimal location of
one/ and two thermocouples are given in Figure. 2, where a change of the
experiment quality criterion is illustrated IF [M=(T))] 4 nn depending

on the sensors setting coordinates. For two sensors there are shown surface
sections P(X,,X,) by planes drawn through the point of maximum value of

criterion parallel to coordinate planes.
The results obtained show that in the analyzed experiment to provide high

accuracy of solution of an inverse problem one sensor should be set in the
narrow enough domain close to the origin of coordinates. Besides, in this
experiment two sensors will be sufficient since at N > 2 the location
coincidence of the second and successive sensors seems most optimal. The
conclusions made are fully confirmed by data of computational experiments
[32].

A solution of the inverse problem followed then using the procedure of
work (24]. A thermogram of the corresponding experiment is shown in Figure.
1. Tu verify validity of the measurement plan and to estimate the authenticity
of the inverse problem solution analysis was made of the effect of the initial
guess about the unknown function on the solution [32]. The results of such an
analysis are given in Figure. 3.

It is seen that the solution of the inverse problem does not depend on
values of initial guess, thus proving high authenticity of identification
results obtained. For comparison on Fig. 3 there is also given a temperature
dependence of thermal conductivity obtained by the method of monotonic
heating. It is seen that in the high-temperature region there is .a
considerable difference of this dependence from that obtained from the
solution of the inverse problem. Here, the dependence X(T) obtained as a
result of identification provides much better temperature correspondence,
calculated from 16)-(19). with values measured experimentally, thisL confirming high authenticity of results as well.
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[t It should be noted as a conclusion of this section that effective1
thermophysical characteristics of high-temperature composite materials can
atrongly depend on heating conditions. It is caused by thermal destruction of
a binder [49]. this process depending on heating rate [50]. The analogous
dependence takes place for semi-transparent materials [51]. To avoid this
factor, methods based on solution of inverse heat transfer problems have been
developed for determining heat transfer characteristics in more complicated
mathematical models taking into account effects of thermal decomposition
(25.39,52,53] and heat transfer by radiation [40,54].

I DENTI FI CATI ON OF CONTACT THERMAL
RESISTANCES IN MULTILAYER STRUCTURES

Contact heat transfer is important in different technical systems. The
main characteristic of this process is contact thermal resistance. At present
stationary methods are widly used to determine contact thermal resistances in
different joints [55,56]. Non-stationary methods based on solving inverse heat
transfer problems are more effective (see, e.g. [7,17]) but in spite of the
fact that the first works devoted to such methods were published about twenty
years ago [5,-59], only isolated investigations are known in this field
especially experimental-computational studies. Works devoted to optimization
of experiments for identifying contact thermal resistances are also isolated.

The application of identification method is considered in this section to
determine thermal contact resistances between fuel and shel in fuel rods of a
nuclear-power reactor.Transient processes between successive stationary states
are analyzed when the reactor is started up for the first time.The results of
experimental-computational studies presented in works [33,60-63] are breafly
discussed.

The mathematical model of a non-stationary heat transfer process in a
fuel rod is given by the following boundary-value problem

OT 10 1 aO T
C X XTI -x(T ' -d-) + q v(x, )L. X<L1, 0<T-Tm ( 21)

OT 1 0 OTC 2 LT-= x Ox(". 2 (T) -ax ) . L I<x<L2, 0<<T M 22)

TI(x,0) = To .1 (0), L - x - L1 L 23 )

T2(x.0) T0 2 (0). L < x -5 L 24

OT ( L 'T)
10 25

1 1 1 1

k (T L,,T)O 1 =L .(T2 (L, , T 26)
I I' ax 2x
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-R) ,TLT (r) r( 27

0'. (L 2 t-)
.2'T 2(L2 .-) dx -- (T [Tz (L ,T)-To(L.)] ( 28 ;

In the model (21)-(28) initial temperature distributions T (x) and Tz (x)

are computed by solving the corresponding stationary problem. Energy release

in fuel q,,(x.r) was computed taking into account radial nonuniformity q(x)

and integral heat release q, (T) measured by neutron detectors

,, = q(r q(xT ( 29 )

q I T )

where g r) L

ZITJ qC~x%dx

L

The contact thermal resistance R is unknown but temperarures are avaible
measured in some points of the structure analysed

T (X. ,) = f .(r i = i .N j 1,2 30
moos j.,L J, j3

The inverse problem is to determine R from conditions (21)-(30).During
each transient regime contact thermal resistance R was considered as a
constant .The main goal of the investigation was to determine experimentally R
depending on integral heat release q,.

Iterative numerical algorithms were developed for solving inverse
problems analysed [60,62]. the residial functional being written down in the
form

S T ( X .T1-f ( dT + (Tj J.,L ,L(O) 31

Algorithms for solving temperature measurements design were also
developed.These algorithms were used in carring out experimental-computational
studies of contact heat transfer processes in fuel rods.Some results are
Lbreafly discussed below.

General sequence of stages was similar to that for thermophysical
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Fharacteristics identification.At the first stage parametric analysis of the 1
accuracy of inverse problem solution as well as optimal temperature
measurement design were made.Input data for solving this problems one can see
in work [61].

The results of measurement design for one thermocouple are shown in
Figure 4.One can see that the thermocouple installation into the fuel is much
more effective.The conclusions made are fully confirmed by data of parametric
accuracy analysis of the inverse problem solution (61).Computations show that
it is quite enough to use one thermocouple.Basing on the results
obtained.thermocouples were installed on the internal surfaceof fuel tablets
which had the shape of hollow cylinders.

The results of experimental data processing are illustrated in Figure
5.One can see that a decrease takes place when q is approximately equal to

210W/cm.It testifys to the fact that the fuel gets in touch with the shell.
For comparison the dependance analysed is shown here,which was obtained by
using the method of work [64].The last one does not predict the moment of
touch and so gives much more optimistic results of safety analysis.

CONCLUSION

The results presented demonstrate high efficiency of methods for thermal
sfudies based on distributed parameter system identification.Such methods
facilitate to obtain trustworthy data for heat transfer characteristics and
increase the accuracy of mathematical simulation of thermal conditions.
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ABSTRACT

A new method for predicting the optimal velocity distribution on the wall of a two-dimensional
diffuser is presented in the paper. The method by Principle of Dynamic Programming solves the
optimal control problem with inequality constraints of state variables. The physical model of
optimization is to protect the separation of the boundary layer while getting to be maximum pressure
ratio in a diffuser of a specified length (or getting to the shortest length in a specified pressure ratio).
The calculation results are fairly in agreement with the experimental ones. It shows that optimal veloci-
ty distribution on a diffuser wall should be as: the flow decelerates first quickly and then smoothly,
while the flow is near separation but always protects from it. The optimal velocity distribution can
directly be used to design the contour of the diffuser.

INTRODUCTION

A diffuser is an important part of compressors, fans and other air ducts. More and more atten-
tions have been paid to its design. In the past dozens of years, the popularization and development of
the optimization technique make it possible to design a diffuser with optimal velocity distribution

The index of optimizing a diffuser is to obtain the highest pressure ratio under the condition of a

minimum constructional length. Generally speaking, in order to get an optimal shape of a diffuser, it is
necessary to know an optimal velocity distribution on its wall. With the distribution, the boundary lay.
er can be avoided seperation and a maximum pressure ratio (or pressure recovery) can be obtained in a
specified length.

Nowadays, most designs of diffusers, which are two-dimensional or axial-symmetrical, are still

based on experience. Designers often use the criteria of the diffusing angle or the equivalent diffusing
angle and one-dimensional calculational method to design it. Obviously, it is too simple to reach the
index of the optimal design.

Stratford(1959) proposed that the loss in a diffuser with the minimum length is the minimum

while the boundary layer inside it is close to but just before occurrence of separation, then the velocity

distribution is the best and the shape of the diffuser is optimal. Some researchers, such as H. liebeck,
H. Fernboly, have used this principle to make some optimal designs.

Many authors also investigated the flow field in a diffuser and study how to control the flow

L
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separaction.
Some authors attempt to use the optimal control theory to solve the optimal design of a diffuser,

because the governing equations of the flow in it are differential ones.

Gu and Ji (1987) proposed an optimal design problem ofa diffuser, using the optimal control the-

ory and the boundary layer theory. The optimal velocity distribution on its wall was obtained by using
Pontryangin's maximum principle.

In order to meet the demands of engineering application, the optimal problem has to satisfy some

constraints in both aerodynamics and strength which can be divided into two parts: one is called as
constraint of state variable and another constraint of control variable. Those constraints are often

inequality and make it very difficult to solve the problem in mathematical treatment.

It is well known that Pontryagin's principle can only solve the optimal control problem with con-
straints of control variables. To overcome the difficulty, many authors have -one some research work

and modifications such as continuous transfer techique (Jocobson, 1969; Gu, 1987) and expanded pen-

alty function method (Gu and Miao, 1987).
However, for a problem with more inequality constraints of state variables the treatment is not ef-

ficient which have been stated by Gu and Miao(1987). That is to say, The more the constraints, the

more the difficulties. On the contrary, the principle of dynamic programming is quite good at treating

of state and control constraints. The more the constrains, the faster the calculation, because the numer
of considered states and decisions decreases in seeking optimal decision.

In the present work, a physical model and a mathematical expression for dynamic programming

are established and calculated. The result yielded by the method is quite in agreement with not only the
experimental ones but also the result by Pontryagin's maximum principle.

ESTABLISHMENT OF AN OPTIMAL DESIGN PROBLEM OF A DIFFUSER

It is well known that the flow losses in a diffuser mainly consist of separation loss and friction one.

Obviously, the former is greater than the latter. The friction loss is always inevitable. However, it

doesn't vary greatly because the friction coefficient is approximately a constant in the fully-developed

turbulent flow. The total friction loss can be considered as increasing proportionally with the axial
length of a diffuser. So the key to designing an efficient diffuser is to avoid the separation of boundary

layer. Considering the two factors mentioned above, Stratford. (1959) proposed that the properties of a

diffuser with the minimum length and without boundary layer separation is optimal.

Generally, the turbulence degree at the inlet of a diffuser in engineering is so high that we can as-

sume for convenience that the boundary layer has become a turbulent one at the inlet edge. And
incompressible flow is only considered in present work.

The typical expressions of a optimal problem for a diffuser are as follows:

A) Pressure rise coefficient is maximum (i.e. the discharge velocity is minimum) under the condi-

tion of a provided constructional length and without separation of the boundary layer.

B) The length of a diffuser is minimum under the condition of a provided discharge velocity (i.e.

the pressure rise coefficient is known) and without separation of the boudnary layer.

It can be proved that the expressions A) and B) are correlative.
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The separation of theboundary-layer is a very complex, problem. According, to ,the. change, of ve.

locity in main flow, the, separation of boundary layer can be predicted by some experimental formulas

to some extent. The following equations are adopted as the basis of solving the optimal problem, (Ref.

1,3,4,5,6,7,8,9,10).

The velocity shape factor of boundary layer is introduced as follows:

1 6 2du Re" m = 1 /4 turbulent flowF=r e (1)
Udx 2m 1 laminar flow

where

6=1 f 1 - -)dy Re,, U0 U U

U is the velocity of maih flow.
r > 0 denotes acceleration flow, and r < 0 deceleration one. So r can be used to judge whether the

separation happens or not.

For a deceleration flow, the relationship between 62and U is as follows (Rcf.1):

d [ /, U6E2 ) " 1/ _2 dU(U2) /dxL V\ v 0,0175 -4.1 U dx v) (2)

For convenience, the length of a diffuser, L, is used as a characteristic length; the velocity at the in-

let, C, as a characteristic velocity. Then Eq. (2) can be rewritten in a non-dimensional form. The
non-dimensional length of a diffuser contour is S = X / L, the non-dimensional velocity V = U / C,
the non-dimensional momentum thickness 0=62/ L. So the Re 62 is

Re 6 =U.6 /v=V.0ORe o

where Re = C • L / v at the inlet of the diffuser.

Then Eq. (2) becomes as:Vd6) 1 ' 0 dV "4 (3
[O(Re. • V 0)'/' 0.0175-4.15 - (Re. " V 0) (3)

ds o V Vds 0

Substituting the non-dimensional form of Eq. (1) into Eq. (3), we yield
dO -1/4d = (0.014 - 3.52w •7)(Reo * V . 0)- (4)

According to the result of Nikuradse's experiments, Bunf proposed that the boundary layer will sepa-

rate when r is not greater than -0.06. As stated by Gu and Ji(1987) to ensure the flow in a diffuser to

be far from separation, we utilize the limit of F as:
-0.04 <0

MATHEMATICAL EXPRESSION OF THE OPTIMAL PROBLEM

The mathematical expression of the index of optimization A) is as follows:

Index function:
J(* )= V(* )-,-min (5)

S. .
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dV V3/4 0-,,4 .Re-1/4=s r • ,V • , (6 - )

d _(0.014_ "3.52. r)(Reo • V. 0) "/ (6--2)

0 > r > - 0.04 (7)
V(o)= 1, O(o) =0 (8)

0

-'V( * , 9( * ),.iree (9)

Sothe mathematical expression for dynamic programming solution is as follows:

Index function:

J(1)=J rv 0 -sRe 1 1 ,4ds- min (10)
0

$.t.

dV/ ds = rV3/40 -'/4Re -/(6-1)

dO / ds = (0.014 - 3,52F)(Re ° VO) -/4 (6-2)

initial condition: V(o) = 1 0(o) = 00 (11)
control constraint: - 0.04 < r < 0 (12)

state constraint: 0<V< 0. < 0 (13)
Quantizing the equations listed above, we yield:

J= 340k 1-1/4 (14)

V(k + 1) = V(k) + AS * (k)V(k)V/ ) (k)- 5/'}Re -/4 (15)

0(k + 1)= 0(k) + AS• (0.014 - 3.52r(k)[Re. V(k)0(k)] '} (16)

- 0.04 < r(k) < 0 (17)

0 < V(k) < 1 (18)
0 < 0(k) (19)

and the iterative relation becomes

{ J(V,0,k)= min{AS* [(k)V(k) 3/4 -(k)'/4  - 4-]+ J(V,O,k + 1)
r((k) Re (20)

J(V,O,N) = 0

CALCULATION RESULT AND ANALYSIS

In calculation, Reo and N are taken as 106 and 10 respectively. The state variables and control
variables are quantized respectively. The sets of admissible state variables are as follows:

V= {0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.01

0= {0.00226, 0.00508, 0.00781, 0.01058, 0.01336, 0.01890, 0.02168, 0.02445, 0.02722, 0.031

Then the allowed quantized states are:
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S ((0.4, 0.00226), (0.4, 0.00508)i (0.4, 0'0078), .. ,...,*,...,...,, 0.03)1
And the, set of admissible control variable is as follows:

r= (-0.04, -0.035, -0.03, -0.025, -0.02, -0.015, -0.01, -0.005}

The two-dimensional dynamic Programming Computatinal procedure is used because there are
two state variables, the calculation procedure is presented in the computer flow chart. The initial value
of V and 0, that is , the values at stage o, are taken as I and 0.00226 respectively. The calculation re-

sults at stage 5 are presented in Table 1. There is only a part of all results because the results are too

many to list them all. At each stage, a similar table can also be listed.

In the table 1, a grid point stands for a allowed quantized state, the value put to the right-up of a

grid point is the optimal value of index J at this state, and the one put to the right-down of the grid

point is the corresponding optimal value of control variable r.

Computer flow chart.

Begin

Giving the maximum stage number N. Quantizing the state variables (V and 0) and

K=N-1

For each allowed state, calculating the index value J by Eq.(20) according to the set

of allowed control value r. Finding the minimum value of index value J and corre-

sponding control value r. The J and r arc talken as the optimal values of index and

control variables respectively for this state

K=0? K=K-l

Giving the values of V and 0 at stage 0

Calculating the optimal value F(k) by interpolation at stage k, then calculating the

values of V(k+l) and 0(k+l) by Eq.(15) and Eq.(16)

K=N 
K=K+l

End
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As shown in Fig. 1, curve ABC is an optimal velocity distribution of the diffuser. The results are is

quite in agreement with the experimental data and the results calculated by Pontryagin's maximum

principle by Gu and Ji,(1987).
The optimal velocity distribution ABC is also called as an optimal deceleration curve for a

diffuser. In the range above the curve, including the curve, there is no separation while r is not less

than --0.04; on the contrary, in the range under the curve, separation will happen. So the curve ABC is

a critical line (1 = -0.04) between separation and non-separation.

Drawing a deceleration curve AB'C' in the nonseparation range, we can find that for a diffuser

with a specified length, the discharge vclocity V ' is always less then V'. On the other hand, for a speci-

fied discharge velocity V' (which menas a specified pressue rise coefficient) the corresponding optimal

length S' is always less than S'. That means reducing velocity along the optimal deceleration curve

ABC will yield the maximum pressure rise coefficient in a specified length or the minimum length of a

diffuser in a specified pressure rise. In this case, the length is minimum and the loss is nearly minimum

because there is no separation.
From the physical explanation of the optimal deceleration curve in Fig.1 It is also proved that the

two expressions of index functions A) and B) of the optinal control problem are correlative. That is,

the optimal velocity distribution obtained by one index function can satisfy another automatically.

THE CALCULATION OF THE DIFFUSER CONTOUR

The contour of the diffuser is calculated by means of the optimal velocity distribution on the sur-
face, so that it is also called as optimal design problem or inverse problem. It is well known that solving

the problem directly in X-Y plane will involve non-identifed of calculated region. So coordinate

transformation is neccessary. It is the easiest way to transfer the X-Y plane to 0-TV plane.

The governing Equations. in (D-' plane has been deduced strictly in the paper as:
Taking an element in X-Y plane and considering incompressible, potential flow, the continuity

equation and non-rotation equation are as follows:
aV aV+ - 0 (21)
ax ay

aV aVy . 0 (22)
ax ay

Velocity vector is
V = IV1 (i " cosf + .j" sin#) (23)

Where IVI is the amplitude of V. fi is the angle between Vand coordinate line X.

The transform relation between X-Y plane and 0-' plane is:
•f =(Yv '.fo - Y0 ".)/J (24)

f = (- Xf + X0 f,/JJ

Where J is Jacobi matrix.

Substituting Eq. (23) and Eq. (24) into Eq.(21), because of J0, then we yield:
aV V)+ ( Y eoso +X sinfl
-- I(Ycosf- XsinF aT 0 -
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+ ... - asinfl + 4 fl . asin f :acbf). (,,--
+ Y'I + V(X,-- r -0

-the four items on the left side ofEq. (25) are as follows respectively,
-aV- 4V 2 + 7.(Y0 cosfl.- Xsinf/)- x +

aV
-- (- Y cosp + X0 sing=- 0

ao -0
asinfl acos V # 2 +2

v - ax + 0 a

In deducing the definations of normal and tangent unit vectors of equal (D and equal TP lines, Eq.
(25) can be rewritten as,

a~'" X2 2 +V+- x 2+Y 2 =0 (26)

It can be easily proved that:2 2 2_- - 2_-
Xv+Y2 = /2®+ Y2 =V/J

And substituting it into Eq.(26), finally, the continuity equation in 0-T plane can be given as:
aln +a# = 0 (27)

aOI a'!
In the similar way, the non-rotation equation in 0-P plane is:

alnV afl = 0  (28)

Two Laplace's Eqs. can be obtained from Eq. (27) and Eq.(28):
a21nV a21nVanT+ A>n2 = 0 (29)

a#2  ap2

2 + T2 =0(30)

The velocity distribution within the diffuser can be obtained by solving Eq. (29) with ADI

method. Then from Eq.(28) the values of # on the top line (T1 =0 or TI = 1) of the potential flow region

can also be yielded, so the shape of potential flow region can be defined. The diffuser contour can be

modified by adding thickness of boundary layer. The calculation result is shown in Fig.4, the line of

Y / L = 0 is the central line of diffuser. The shape is quite similar to the real size of B. S. Stratford's dif-

fuser. The equivalent diffusing angle of the diffuser is 19 * (integral angle), and is much greater than

ordinary recommended angle.

CONCLUSIONS

The optimal deceleration curve (i.e. optimal velocity distribution) on the wall of a diffuser is first

obtained by using the principle of dynamic programming. In solving optimal control problem of fluid

mcchnics with inequality constraints of state and control variables, the dynamic programming method

has many advantages over others. The physical model of optimization for a diffuser is to avoid the
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separation of boundary layer while getting to the maximum pressure rise in a diffuser, of a specified

length (or getting to the shortest length in a specified pressure rise). The calculation results are fairly in

agreement with the experimental ones and the results calcaulated by Pontrayagin's maximum principle.

The optimal velocity distribution on a diffuser wall should be as: the flow decelerates first quickly

and then smoothly, and the flow is near separation but always protects from it. The optimal velocity
distribution can also be expanded to design an unsymmetric diffuser.
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0.750 0.763 0.776 0.789 0.803 0.818 0.842 0.870 0.930
-.040 -. 040 -.640 -.040 -.040 -.040 -.040 -.040 -.040

0.822 0.831 0.840 0.849 0.858 0.867 0.879 0.907 0.993

,9=.00781 -.......
-.040 -. 040 -.040 -.040 -.040 -.040 -.040 -.040 -.040

0.863 0.870 0.877 0.884 0.891 0.897 0.906 0.926 1.017
@ =.01058----------------------------------

-.040 -. 040 -.040 -.040 -.040 -.040 -.040 -.040 -.040

0.890 O.895 0.901 0.906 0.912 0.917 0.924 0.938 1.028

9=.01336 .....-
-.040 -.040 -.040 -.040 -.040 -.040 -.040 -. 04b -.040

0.909 0.913 0.917 0.922 0.#26 0.931 0.936 0.947 1.031
0=.01613

-.040 -.040 -.040 -.040 -.040 -.040 -.040 -.040 -. 040

0.923 0.926 0.930 0.934 0.938 0.941 0.946 0.954 1.030

19=.01890 
I

-.040 -. 040 -.040 -.040 -.040 -.040 -.040 *-.040 -.040

0.935 0.938 0.941 0.944 0.948 0.951 0.9b4 0.961 1.028
=.02168-

-.040 -.040 -.040 -.040 -.040 -.040 -.040 1-.040 1-.040

V=O.b5 V=0.80 V:0.75 V=0.70 V=O.,b v=0.60 V=0.55 V=0.50 V=0.45

Table 1
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FOR TRANSONIC AIRFOIL DESIGN
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Inst. of Fluid Mechanics

Beijing Univ. of Aeronautics and Astronautics
Beijing 100083, China

ABSTRACT
It is known from the Lighthill's exact solution of the incompressible inverse problem

that in the inverse design problem the surface pressure distribution and the free stream
speed can not both be prescribed independently. This implies the existence of a constraint
(regularity condition) on the prescribed pressure distribution. The same constraint exists
at compressible speeds. In this paper, a well-posed inverse design method for transonic
airfoil is presented. In the method, the target pressure distribution contains a free
parameter that is adjusted during the computation to satisfy the regularity condition de-
rived in this paper. A few design results are presented here in order to demonstrate the
capability of the method.

INTRODUCTION

Recently, a number of design methods have been developed and used for the design
of transonic airfoils and wings. Slooff' reviewed these methods and divided them into
three major categories: indirect, inverse, and aerodynamic optimization. Indirect meth-
ods are characterized by the fact that the designer has no control over either the
aerodynamic quantities or the geometry. The hodograph and fictitious gas methods are
in this category. In inverse methods, the classical inverse problem of aerodynamics is
solved. The designer specifies an arbitrary pressure distribution on an airfoil or wing,
while the geometry of the airfoil or the wing that realizes the given pressure distribution
is determined as the result of the solution. Aerodynamic optimization methods are those
in which a nonlinear optimization algorithm is linked with a flow analysis code to mini-
mize or maximize some aerodynamic object functions such as the lift-to-drag ratio.

The conventional inverse design methods are the most used in the industry applica.
tion. The currently existing inverse methods for transonic airfoil design can be subdi-
vided into two categories: (a) methods utilizing Dirichlet-type boundary conditions de-
rived from the target pressure distribution; (b) methods utilizing Neumann-type bound.
ary conditions in combination with some geometry correction procedure (residual- cor-
rection method).

In fact, in inverse problems, both a Dirichlet- and a Neumann-type boundary con-
dition must be satisfied on the airfoil contour to be determined. This gives rise to a
nonlinear problem with unknown boundary to be solved iteratively. In the first

L approach, the required target pressure distribution is imposed on an initial airfoil as a
,-1
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ABSTRACT
It is known from the Lighthill's exact solution of the incompressible inverse problem

that in the inverse design problem the surface pressure distribution and the free stream
speed can not both be prescribed independently. This implies the existence of a constraint
(regularity condition) on the prescribed pressure distribution. The same constraint exists
at compressible speeds. In this paper, a well-posed inverse design method for transonic
airfoil is presented. In the method, the target pressure distribution contains a free
parameter that is adjusted during the computation to satisfy the regularity condition de.
rived in this paper. A few design results are presented here in order to demonstrate the
capability of the method.

INTRODUCTION

Recently, a number of design methods have been developed and used for the design
of transonic airfoils and wings. Slooff' reviewed these methods and divided them into
three major categories: indirect, inverse, and aerodynamic optimization. Indirect meth-
ods are characterized by the fact that the designer has no control over either the
aerodynamic quantities or the geometry. The hodograph and fictitious gas methods are
in this category. In inverse methods, the classical inverse problem of aerodynamics is
solved. The designer specifies an arbitrary pressure distribution on an airfoil or wing,
while the geometry of the airfoil or the wing that realizes the given pressure distribution
is determined as the result of the solution. Aerodynamic optimization methods are those
in which a nonlinear optimization algorithm is linked with a flow analysis code to mini-
mize or maximize some aerodynamic object functions such as the lift-to-drag ratio.

The conventional inverse design methods are the most used in the industry applica.
tion. The currently existing inverse methods for transonic airfoil design can be subdi.
vided into two categories: (a) methods utilizing Dirichlet-type boundary conditions de-
rived from the target pressure distribution; (b) methods utilizing Neumann-type bound-
ary conditions in combination with some geometry correction procedure (residual- cor-
rection method).

In fact, in inverse problems, both a Dirichlet- and a Neumann-type boundary con-
dition must be satisfied on the airfoil contour to be determined. This gives rise to a
nonlinear problem with unknown boundary to be solved iteratively. In the first

L approach, the required target pressure distribution is imposed on an initial airfoil as a
,_1
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FORMULATION OF THE INVERSE PROBLEM

The full potential equation can be written in terms of the perturbation velocity po-
tential as

(IM2 ); 7+ (1' ) + "()

Where Mo. is the free stream Mach number, K(y,Mo,) is a transonic similarity
parameter, y is the ratio of specific heats, (F,z-) is a Cartesian coordinate system, and H
represents all the higher order terms.

the tangency condition on the airfoil may be written as
0) = f(2)

where f + (.9 and f _ (x-) are the equations of the upper and lower airfoil surfaces
respectively, and Q represents all the higher order terms.

the pressure coefficients on the airfoil surface are expressed as
C+± (3F) = - 2-p (3F, ± 0) +S(3)

where S represents all the higher order terms.
In a residual-correction method, the solution _(Fz-) of Eq. (1) for an initial

airfoil f ± (x-) has been obtained by means of an existing analysis code, the objective here

is to determine the amount of the geometry correction Af ± (x) corresponding to the
pressure difference ACp± (x) between the specified and calculated pressure. If a small
perturbation A-(-,z-) is further introduced, we can obtain the potential equations for
A-( ',z-) according to the transonic small-disturbance theory

A(p + A(p = [ (( +-- Ap,) - . (4)
XX z x 2 2 x2 xAp: (x, +0) = Af ' (x) (5)

2O
AC,±(x) = -2 2 A~x (x, +_ 0) (6)

here fI = 1 ' M2  and the new variables have been introduced as

x=x, z = I, p(x,z) = (K/fP ) (,), f ± (x)= (K/fl3 ) (-) (7)
By applying Green's theory to Eq.(4) and introducing a decay function similar to

that used by Nerstrud , we can get the integral equations

Au (x) = T { X (x,0; ,0)Aw ( )d + G (x)

- [I,(x,, + O)G( , + 0) + I (x,,- 0)G(x, - 0)]d (8)

AW (X) f JAUj d1r 0 -X
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F
-- !J',(x, ,+O)G(,+O)-I,(x,, ,-O)G(x,-O)]d (9)

here
Au,(x) = Aqp, (x, + 0) + Ap,(x,- 0) (10)
Auo (x) = Atpx (x, + 0) - A(Px (x, - 0) (11)

Aw,(x)= Aq(x,+O)-Aq(x,-O) (12)

Aw,(x) = Aqp(x, + 0) + AqI(x, - 0) (13)
!

T(x,z; ,C ln[(x - )2 + (z - C)]] (14)

G(x,z)=(, + A( x)2 ( (15)

'a(x,+_) = 'T (x,O; ,)exp[ - 2R ( )C]d (16)
o

14x,,__ f T , (x,0; ,0exp[ - 2R ± ()W (17)

R (x) -- If (x)/((x,+0)l (18)
For convenience, the correction function Af± (x) is split into symmetric Af,(x) and

antisymmetric Afa(x) parts
Af (x) = Af (x) - Af (x) (19)
Afo(x) = f+(x) +Af_(x)

Since Af.(x) = Awa(x), the antisymmetric part can be determined by direct evaluation
of the right-hand side of Eq. (9). On the other hand, since Af,(x) = Aw,(x). the symmetric
part must be solved implicitly. Consequently, the correction Af± (x) is obtained by inte-
grating Aw,(x) and AWB(X) with respect to x.

CONSTRAINTS FOR INVERSE PROBLEM

In the incompressible flow, it was demonstrated by Lighthill,12 using conformal
mapping method, that the geometry of an airfoil for a given speed distribution can be de.
termined only if the prescribed speed distribution satisfied the following three integral
constraints

f2x qof 2logq.-". I dav =0 (20)

2x q
logl"'-1 coswo dcv=0 (21)

2 0

J logi- I sino dw =0 (22)dfo q

here q0 is the prescribed speed distribution on the airfoil surface, q , is the speed at infin-
ity, (o is the polar angle in the transformed plane. The first constraint known as regulari-
ty condition is a consequence of the fact that the speed at infinity is q.. Eqs. (21) andl .1



Third international Co0nfi6ence onoI-tersc Design Conc 'and O,timization in Engineerifig Scicnces

(22)-togethe'rexpress -that the airfoil is. a cfosed contour and-the angle ofincidence is zero,

-(or any other specified value):
In order to formulate the .regularity condition for transonic flow, differentiating

both sides of Eq(4) with respect to X, we have

V2 V(x,z)- a2 G(x,z) (23)
8x

2

here
V(x,z) = APpX (x,z) (24)

with a Dirichlet-type boundary condition

V_ (x, ± 0) = V0 (x)= C (25)
2ft1

and a constraint at infinity
2

A pX (x,z)- 0 ; (x 2 + Z 2"- o) (26)

Now we use the transformation
T(X)-=x+ iz\ 2 +] (re - +-- ) +e (27)

4 X42

where x = re is the complex variable in the transformed plane. The entire plane in the
physical plane is mapped onto the outside of the unit circle, the chord of the airfoil (z =0,
0_5x! 1) is corresponds to the unit circle (r= 1, 0< (o___r) on the transformed plane.
Substituting Eq. (27) into Eq. (23) yields

V2 V(r,co)= L / I1'(x)1l (28)
where

L,\c(W= G 2 ('r ') "2G +( Or ') 2G + 2 rG 8 2 0aGDX 2 a O8x ~ra + ar 182 X 8r28(e

The boundary conditions in the transformed plane are
V(r,o),. = Vo(o)) (29)

V-. (r -oo) (30)
By applying Green's theory to Eq.(28), an integral expression can be obtained as

2r 2- I 2x V0(60)

V27,r Fr -2r 1 cos( .- o0) ) + I do

+[ r I L rdrdo (31)
27or f 1 r2r-2rr cos(co-o))+ l IT'(x)jI

If r - , the above equation becomes

V0(co)dw = 2x Iogr rdrdo (32)

In physical plane, Eq. (32) can be written as

J [Aqo (x, + 0) - Ap (x, - 0)]co dx = logr 0 G(x,z) lxdz (33)
0 OX 2
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Using an integration by parts and introducing the decay function, we can obtain the
final form of the regularity condition

0 Aua(x)o [I (x, + O)G(x, + 0) + 1,(x,- O)G(x,- 0)]dx (34)
here

00o rrx--r

I,(X, O) = f exp[- 2R ±(x)z]dz (35)

The above discussion indicates that. the prescribed pressure distribution should con-
tain an adjustable parameter to guarantee that the regularity condition is satisfied. Thus
the surface pressure distribution is to be prescribed in the form

C,± (x) = F ± (a,x) (36)
where a is a parameter that is found as part of the solution. For convenience, the follow-
ing form of CPs is used in this paper:

C,,± (x) = crF± (x) (37)
In order to assure that the resulting airfoil has a specified trailing edge gap, the fol-

lowing closure condition must be satisfied:

f Aw (x)dx = 0 (38)
0

This closure condition can assure that the trailing edg. thw kness of the current
airfoil is always kept equal to that of the initial airfoil.

Although the regularity condition in closed form (34) is obtained from the simple
transonic small disturbance theory with Norstrud assumption, its practical utility will be
shown by numerical examples in the following section.

NUMERICAL AND COMPUTATIONAL ASPECTS

In order to discrete the integrals appearing in Eqs. (16) and (17), the range of
integration with respect to C is divided into subintervals. Assuming that R ± ( ) is con.

stant on each subinterval, Eqs. (16) and (17) can be expressed as
N _ r) =i , (x,O; ,C0d (39)

I~x,¢,0)=Z.exp[-2R ±(oc,|, " " i

N +

I0) = E exp[- 2R 2 ]/(

The range of integration with respect to x is also divided into subintervals, and on
each of subinterval Au,(x), AU,,(x), G(x, + 0), and Aw a(x) are assumed to be con-

stants, while Aw (x) is assumed to vary linearly, the final expressions of Eqs. (8) and (9)

in discretized form are as follows:
1+1 1 ~

AU (X)w (k + G, (x) - v' G(x ,+0) + ikG(xk,-0) (41)

L j
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AW (X,)- i k I<kAuC(xk)- - vG(xX+)- kG(Xk, - )] (42)
kaX k-i

The discretized form of Eq. (34) and (38) can be expressed as
I Ir

-Aux c )= v G(x,,+O) +iKG(x,-0) (43)
i-I)( " -a),_

Z[Aw (xi) +Aw (x+ x,+ -x,_I)=0 (44)
22 2

where the coefficients
$ a V S a .a r .r
1Mlk' lik' Vk Vik, Vik, Vi, V

are the integral expressions on each of the subinterval. The full expressions are omitted
here.

In order to improve the convergence, the following modifications have been taken in
this paper:

1). A Riegels type of leading edge correction is taken in the method. The purpose of
such correction is to remove the singularity at the leading edge of the round-nosed
airfoil.

2). In order to increase the ability to deal with the shock, an artificial viscosity term
is added to the integral equation method.

3). A Smoothing-relaxation procedure is proposed and used in this paper.
The inverse problem can be solved by the iteration process as follows:
1). The flowfield is solved for an. initial airfoil f+ (x) by a direct analysis code. From

the calculated pressure distribution C,,+ (x), and the target pressure distribution
C,,± (x), the residual ACP+ (x) = aCp, (x)-Cp± (x) can be obtained.

2). The adjustable parameter a is determined from the regularit. condition (43).
3). The geometric correction Af+ (x) is determined by solving the equations

(41)-(42). Thus a new geometry is obtained from the following Smoothing-relaxation
procedure:

U+ +1 n+1- U~+1
f_±f (xi)=f±(x± )+6 I Afn+(x,)+0.5 __± (x,_,)+Af± (x,+,) (45)

where 5 is a relaxation factor.
The same process is repeated until the calculated pressure distribution agrees with

the prescribed one.
Several test cases are presented to show the validity and applicability of the proce-

dure. A nonisentropic potential solver for 2-D transonic flow' 4 is used as the analysis
code.

In the first example, the target pressure distribution is taken from the result of
RAE2822 airfoil, the free stream Mach number is 0.73, and the angle of attack is
a=2.05 0 .The initial airfoil is NACAOO12 airfoil, the initial angle of attack is a=0.0.
After 12 design cycles, the RAE2822 airfoil is already recovered. Indeed the designed
airfoil is rotated in a clockwise direction by 2.05 0 with respect to the original airfoil.
This is because the initial angle of attack is chosen to be 0 0 , the angle between the free

I stream and the X-Axi is always 0 * during iterations. Fig.1 shows the target and initial
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pressure distribution. Fig.2 shows the convergence procedure of the pressure
distribution.

The second example is chosen to show the function of the regularity condition. In
Ref. [15], Strand gave a velocity distribution which did not satisfy the Lighthill's three in-
tegral constraints in incompressible flow, hence there is no airfoil corresponding to this
velocity distribution. Strand modified this velocity distribution according to the
Lighthill's constraints, and designed the airfoil corresponding to the modified velocity
distribution, the results is showed in Fig. 3. Now, we calculate this example using the
present method. For convenience, only the velocity distribution on the lower surface is
multiplied by the free parameter a*. After 7 design cycles, the converged solution is ob-
tained, the velocity distributions are given in Fig. 4. In this case, the output velocity dis-
tribution on the lower surface is not consistent with input velocity distribution, this is be-
cause the free parameter a is not equal to 1, but equal to 1.07. The results show that the
method can adjust the improperly input velocity distribution to the acceptable velocity
distribution automatically, and design the airfoil corresponding to the modified velocity
distribution. Comparing the figures the present result is closer with input data than
Strand's one. On the other hand, if the iegularity condition is not included in the
method, the design procedure will not converge for this example.

CONCLUSIONS

A regularity condition in closed form for transonic flow is presented in this paper,
and a well posed inverse design method for transonic airfoil is formulated. The results
show that the method is a reliable and efficient method for the design of airfoil at
transonic speeds. When the target pressure distribution is not properly given, the code
can adjust the target pressure distribution automatically and design the airfoil corre.
sponding to the modified pressure distribution.
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Study of a New AirfoirUsedin Reversible Axial Fans

Li Chao.jin Wei Baosuo Gu Chuangang

Xi'an Jiaotong University

Xi'an, People's Republic of China

Abstract

The characteristics of reversal ventilation of axial flow fan is analysed in the paper. In ac-

cording to the theory or flow a-ound the airfoil, a new airfoil - "s'" shaped airfoil with doub-

le circular arc is presented and experimented in the wind tunncl. the experimental results have

shown that the characteristics of new airfoil in reversal ventilation is the same as that in nor-

mal ventilation and is bcttr.r than that o existing airfoils of reversible axial fans.

Nonerctlaturc

u tangential velocity or impeller

c absolute velocity

w relative velocity

0 enter angle of relative velocity or flow

0 installation angle of blade

P1 a theoretical total pressure

P8 coefficient of theoretical pressure

p dcncity of flow

r radius

blade solidity

C
= -.L coefficient of flow rate

U1

c lift coefficient

c drag coefficient

0( attack angle

k slope of characteristic line of pressure coefficient

b blade chord

F half of the maximum thickness of airfoil

f deflcction of airfoil F)

Subscript

L j
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I before blade ciscade

2 after. blade cascade

u tangential'direction

z axial direction

m for mean radius

o forP, = 0

t tip

h hub

Introduction

The reversible ventilation of a fan is a problm which often arises in many places, for ex-

ample, in road and railway tunnels where it is required to drive the air in one or the other di-
rection depending upon the condition that exists at the time. Though an axial fan whose im-

peller blades are formed with conventional airfoil can drive the air in opposite direction by
simply reversing the rotor, it is round that the characteristics of reversal ventilation is much

lower than that of the normal ventilation, the ericiency of fan decreasing sharply and the flow

rate being about 40-50% of normal ventilation.
The characteristics of reversal ventilation or axial fan with single indepedent impeller is

analysed in the paper. In accordance with the theory of flow around an airfoil, a new airfoil-
"s" shaped airfoi, with double circular arc is presented. If the impeller blades are formed with

such airfoil, the axial fan can operate in each direction to provide a substantially equal but
opposite flow with a higher efficiency than can be obtained by existing fan with conventional

blades. The reversal ventilation can be achieved by simply reversing the rotor of fan. The 's"
shaped airfoil presented in the paper provides a basis for constructing a new type reversible
axial fan with simple construction, easy control and better characteristics.

The characteristics of fan impeller during normal and reversal rotation

According to the 2-D cascade theory, the velocity triangle of a blade cascade of the axial

fan with single indepedent impeller is shown in Fig.l.

From the Eular equation
P, = pu(c 2. - cI)'= pu(w ,. - w2.) (1)

then the coefficient of theoretical pressure is
P,=P,/pu2=u(w, - w2 )/u (2)

where u, is peripheral velocity of impeller.

Writting " ... (3)

L
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u (4)

thus the eq.(2) becomes __

P, RDF4)gol - Igo02) (5)

Prom fig.1

tg 1= - C
Igo r - 1  (6)

According to the cascade theory [4]
tgo 2 =Alg0I +1R (7)

Where

I-(dc / d)cosfl
A 4 Y(8)

1 + 1 dc / d)cosfi
4 if

~(dc7 /d)sin#i
2 Y(9)

1 + 1 dc /d)cosfi
4

P-the entry anglc of relativc velocity during P, = 0, i.e. angle of zero lift line (Fig])
From eq. (5), (6), (7) we get

The slope of characteristic line ofp is

dP

When P~0, the coefficient of flow rate (D would have the maximum value
(1 -A)F (12)40 B+ (I -A)tg6,

and the flow rate becomes maximum too
0= uj: 2nrl)(0dr (13)

If representing with mean radius r.
r

F- t

thus

0.. -(I -A)F-/ [B +(1 -A)g6 11 012a)

It is noted, that the preceding equations are all suitable for both normal and reversal ro-

tating of impeller.

For axial fan with single indepedent impeller no matter what the rotating direction may
be, the air flow into the blade cascade always with axial direction, iLe the angle cS, = 0. Making
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F
superscript"'" for condition of reversal ventilation, thus from the eq. (10), (11), (12a), (13a)
the following equations are getten:

1) the theoretical pressure coefficient
P (1 - A)F2 - Y4B (14)

P/= (1 - A')F 2 _ D'B' (15)

2) the ratio of K of reversal ventilation to that of normal ventilation
-, K' B'

= -B(16)

3) the ratio of maximum theoretical reversal flow rate to maximum theoretical normal
flow rate during f,= 00' V (-A')

om = om = ( - (17)

Assum that dc./ d a maintains constant during normal and reversal ventilation, and in-
sort eq.(8), (9) into eq. (16), (17)

sin/l'[1 + (de / da)cosp]k= 4 (18)
sinj3[l + (dc, / da)cos/'1

jo = ctgl' (19)

From fig 2
S=/i, - =, ,fil' =, + a'o

then inserting into eq.(18).(19)
thus

sin(fi, + '='o)[1 + 4(dc/ d)cos(p, - %)1
= >I I (18a)

sin(#, - a )[1 + W(d / da)cos(t, + t'o)

"/o ctlg(fl , a' ) < I (19a)
0 cig(ft1 -a0O)

From preceding two equations, it is found that J0 less than I and K larger than I except
P/'--) (i.e. a0=-a'0). It follows that if the impeller of fan rotates in opposite direction, the

maximum flow rate of fan would decrease and the slope of characterstic line of P, would be.

come steep.
Because the ao, a' 0ar e relative with geometrical parameters of blade cascade, such as

airfoil deflection ? blade solidity r, installation angle of biade 0,and blade thickness c. there-

fore Jo and kmust be the function of such parameters
Jo =ff,',O,c)

k = f(fT,r,,c) (20)

From eq. (18a), (19a) if P= /'(i.c a0+a' 0
= 0)

L
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then
Jo =1,K= (21)

It means that the characteristics of fan during ccntrary rotation is the same as that duir-

ing normal rotation, therefore the best effect of reversal ventilation is obtained.

It is clean that only following two condition can satisfy the cq.(21)
(1) a0 = a/0 = 0

It can be obtained that if the airfoil deflection /= 0, such as the flat plate airfoil, ellipse

airfoil, the characteristics or such airfoils are lower and not satisfoctory for ue.

(2) o = -a' 0(a0=0, a'0*0, .[= 0)
It can be obtained when the zero lift line of cascade in reversal ventilation is parallel to

that in normal ventilation, i.e. the airfoil must posses the reversal symmeterical npofilc.

"S" SHAPED AIRFOIL WITH DOUBLE CIRCULAR ARC

On the basis of analysis in preceding section we present a new airfoil-"s" shaped airpoil

with double circular are as shown in fig.3. It is a reversal symmeterical airfoil satisfying the

condition a =- a' 0.Thc centre line of the airfoil posses the shape of"s", which is connected by

two circular-arc lines ABC and CDE tangential to each other. At the middle points of two

arcs (B.D) the deflection of centre line is maximum./y... I-- F
Where F is the half of the maximum thickness of airfoil.

The equations of centre line of airfoil may be written as

arc ABC I )x- +(y+a)/=R' xe(0,)

x. 3b 2 )2
are CDE x_-- +(y-a) =R xe(, b) (22)

\ 4) 2'

where a=(b2 /32F)-F (23)
2

R(radius ofcircular arc)= + 2 (24)

The formation of airfoil profile

Along the ccntre line BCD a number of circles with radius r= F are drawn whose centre

points are at the arc BCD,then a number of another circles arc drawn along the arcs AB and
DE,whose centre are at these arcs and whose radiuses arc identifed with the perpendiculars

from center points to abscissa line x. Drawing envolope line arourd such circles, the profile of

the new airfoil is formed.

If the chord of the airfoil b is constant, taking different value of F , a number of "s"

shaped airfoil with different deflection 7 would be obtained.

L J
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EXPERIMENTAL RESULT

Four "s" shaped aiifoils with difl'crcnt ?f arc expcrimented in wind tunnel in

aerodynamic laboratory of Jiaotong Univcrsity in octobcr 1987. Their symbol,,; arc CS-3(f

--3%), C-3.5(.f-3.5%) CS-4(f= P/0) and CS-7(f-7%).

The cxpcrimcntal results or thcsc airfoilsarc shown in Fig 4. From fig 4a) It is seen that

with the increaring of attack angle a the lift cociicients cy increase and reach the maximum

value then decrease gradually. In the range =0 0 - 13 * , the cy of airfoil CS-4 is the high-

est among others (cax= 0.87) and the cy of airfoil CS-7 is lower than that of others. From

Fig 4 b) it is seen that the drag coeflicent cx of all four airfoils are increased from a = 0 * and

the c. of airfoil CS-7 is much higher than that of others. In the range of attack angle = from

0* to 10" the cof airfoil CS-4 is lower than that of' others. It is followed that the

aerodynamic characteristic of airfoil CS-4 is better than that of others. Furthermore when

the deflection of airfoil is too big (.-/>7%), the drag coefficient c. of airfoil would increase

sharply. The aerodynamic characteristic of airfoil CS-4 is compared with the conventional

airfoil (NACA-64, NACA-66). From Fig 5 a), 6 a) it is shown, though the cy of airfoil

CS-4 is lower than that of NACA airfoil in normal ventilation, it is much higher than that in

reversal ventilation, expecialy at bigger attack angle. From Fig 5 b), 6 b) it is seen, in the

range =0- 10 * the drag coefficient c, ofairfoil CS-4 is lower than that of NACA airfoil

in normal ventilation, while a > 10 * it is higher than that of NACA airlbil, but in reversal

ventilation condition the cX of airfoil CS-4 is much lower than that of NACA airfoil in all

range of attack angles in experiment.

In order to analyse the flow around the "s" shaped airfoil , the pressure discribution

along the surface of airfoil CS-3 at a = 4 * is measured as shown in Fig 7. There are two are-

as bounded by pressure coefficient c. line of airfoil. The area on the preceding half of airfoil

(x / b = 0- 0.5) is positive, which indecates that the lift force on the airfoil is upward; The area

on the rear half of airfoil (x / b = 0.5- 1.0) is negative, which indecates the lift force on the

airfoil is downward. Since the preceding area is bigger than the rear area, so the summary lift

force on the airfoil is upward. Varying the attack angle a , the two areas and the summary lift

borce would be changed.

12
In the Fig 7. c =(P -1 O)/ pc where P, is the pressure at the surface of airfoil.

P. is the ambient pressure, c. is the flow velocity in the wind tunnel.

Conclusion
1) If the impeller of axial fan with conventional airfoil rotates in reversal direction, the

maximum theoretical flow rate would dccrcase, the characteristic line of P, become steep, the

L j
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characteristics of fan would be worse.

2) The characteristic of impellcr in reversal ventilation is identical with that in normal

ventilation, when the dcflcction of airfoil [=0 or .P0 but the.profilc of airfoil is rcvcrsal

symmctcrical.

3) The "s" shapcd airfoil prcscnted in thc paper is a rcvcrsal symmctcrical airfoil. When

the impeller whose bladc is formcd with such airfoil rotates in opposite direction, its charac-

teristic would be the same as that in normal ventilation.

4) The synthetical characteristic of axial fan whose impeller blade is formcd with "s"

shaped airfoil would bc bcttcr than that formed with conventional airfoil, especially in rever-

sal ventilation condition, thcrcforc the new airfoil presented in the paper is more available for

reversible axial fan.
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F INVERSE PROBLEMS I-N DIFFRACT-ION

Andrew G.Mikheev and Aleksey S,.Shamaev

Institute for Problems in Mechanics USSR Academy of Sciences
Pr. Vernadskogo 101. Moscow 117526, USSR.

ABSTRACT

A two-dimensional problem of diffraction of a plane
electromagnetic wave on a smooth 27U-periodic surface is
considered. Numerical algorithm, solving this problem is
developed.

An inverse problem of determination of the shape of
2%-periodic surface using the performance data of reverse
scattering is considered.

Inverse problem was solved by means of minimization of
the residual functional with the help of gradient descent
method. The initial data were calculated with the help of
the numerical method. On each step of iterative method of
minimization ,the residual functional was calculated
approximately with the help of small slope method. The
examples of the shape determination are considered.

INTRODUCTION

The new approximate methods, solving the problem of
diffraction on a smooth two-dimensional infinite wave-like
surface (for example [1],[2)) give us hope of solving the
problem of the wavy shape determination using the
performance data of reverse electromagnetic scattering.

The aim of this paper is to show the advance of the
approximate method of small slope in connection with the
inverse diffraction problem. For this purpose we consider
only periodic surfaces because for such surfaces there may
be developed numerical methods, solving the direct problem
with the high accuracy, so the accuracy of the approximate
method, solving the inverse problem, may be investigated.

In the first part of this paper the two-dimensional
direct problem of diffraction of a plane electromagnetic
wave on a smooth 2 -periodic surface is considered, the
numerical method, solving the direct problem of diffraction
is developed:
With the help of Green's function of Flocke canal the direct
problem is reduced to the one-dimensional integral
equation. The kernel of the integral equation contains
logarithmic singularity, which is expressed in the explicit
form. The well convergent series for calculating the kernel
of the integral equation are developed. The integral
equation is solved using the method of moments

In the second part of this paper the small slope method

is applied for the problem of diffraction on a periodicL
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F
surface, the algorithm, solving the inverse problem, is
developed, the examples of shape determination are
presented:
The inverse problem of determination of the shape of
2-periodic surface using the performance data of reverse
scattering are considered. Inverse problem was solved by
means of minimization of the residual functional with the
help of gradient descent method. The initial data were
calculated by means of multiple solving of the integral
equation On each step of iterative method of minimization
,the residual functional was calculated approximately with
the help of small slope method. The formulas for approximate
calculations of residual functional are presented.

1. Mathematical formulation of the direct problem.

The unknown function u satisfies the Helmholtz

equation

A u + 2 'u = 0 (1)

in the region 0 = {(xy) I -0c < x < f(y), 0 5 y < 2% }.

Here k is wave number, k=! , f(y) is smooth 21X-periodic
c

function.

The boundary condition for the function u is

u(f(Y),Y) = 0 (2)

In the region x < x0 = inf f(y) the
(0,2 ]

radiation condition

-+0 -i nx iX y

u = e COS+ysin) + T ne e (3)
n-c

is imposed on u . Here c is the angle between the wave

vector of incident wave and x - axis, X = k.sinc + n,n

n=1k2 _ X2 . Re Yn? 0 Im Yn? 0. T are unknownn n n n n

amplitudes of scattered plane waves.

The function u is also assumed to satisfy theL
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Flocke conditions:~

u (x, 2'10 u u(x, Q) eit (4)

y(x, 21E) = y(x, 0)e 1  (5)

where t = 2nk-sina.

2. Mathematical formulation of the inverse problem.

Let us consider the set of direct problems (1) - (5)

for resonance values of parameters k and a

a (--!,O)U(O.-)
2 2

kIsan(I (6)

Problem:

For the given function T (0)0 T are

determined in (3) ) where a E(-!!,O)U(O,7!) determine
2 2

21X-periodic function f(y).

ANALYSIS

1. Numerical algorithm, solving the direct problem.

With the help of Green's function of Flocke canal

G(XP ]?Z.I l 6X2 + ( 6y+2Xm )2 -ei'mt (7)

here 6x - XMXP, 6y' = y M-YP' I- (x) -is the 1-ankel

function of the first kind of order 0 )the problem is

reduced to the one-dimensional integral equation for the

aufy)Y

L
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27T .Ou
_ _1 G f(y)yf(y) ,yl(y)--(f(y)yp)d =

0

i(f (y •cosa+yM -sint)
= e (8)

Here l(y) 1 + [f2y)]2

The integral equation (8) was solved with the help of

method-of-moments

Let us divide the segment (0,2%] into N equal length

segments, using points y. ( Yo=0, YN=2E ). Consider

functions

O ( = J 1 y E [ yi.- , y ]

0 Y ."i [ Y I

Let us seek an approximate solution of equation (8) in
the following form

N

4P (Y 0y) (9)
L=I

where coefficients D are to be determine.

Function N(y) assume to satisfy equation (8) in points

y - 1" ( y + y,). It gives following equations for D.
2 t.-1

2

coefficients determine

Y.
N

i~jl) G f(y. 1).Y' 1f(y P)Y)IyP)Y
L= ( t-- 11--

y 2 2

L J



Thlird Irnernaztional Conference on -Inv-erse ,Designio Cnes.an Op iiation in ninerng-Siences.
(ICID S-TIyh. W

'F=exp ( I(y. ;".coscx + s sinot] (10)'

2 2

The expression (11) gives the well convergent series, which
gives us the method for calculating the kernel of the
integral equation (8).

.ix 06y :12'-0 l
G ( M,P ) = e *e +

+ [e~~ ch(-L16xW) (n,6x,6y) -

n-I

-ish(LI6xI)-§ (n,6x.6y) j+ R(n,6x.6y) J(11)
Here M = (x ,y) I P =(xP~ P y.,) ,

5 (n,6x,6y) - cos(n6y). e-nl6xI (12)
n

2(n,6x,6y) - sin~n6Y). e-n6xi (13)
2 n

ix n6y irI n 16xli y iyrI6xI

R(n,6x,6y) - .(e e + e e -2 n -~n

* izb6y -ni6xl
e ~cb(jxj)cos~n~Y) -nb

i'shC~6xj)-sin(n6y) 3(14)
R satisfy the expression (15)
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r
I R(n,6x,6y) I <  2 (15)

n

Rows (12), (13) can be summed:

4 (n,6x,6y) = -in2 + 16x - 1In sh2( -) +2 22
n=1

+ sinz( L_ )J (16)

00sin(6y)

S2(n,6x,6y arctg e6X - cos(6y) (17)

n=1

The kernel of the integral equation contains
logarithmic singularity, which is expressed in the explicit
form in (16).

2. Approximate method, solving direct problem

The well known small perturbation method gives

following formulas for amplitudes Tn

TS.P. -% 4 f ~TS " = A.6 B nf. + E * f (18)
n on nn mn m n-mm

1 - inyf 1 n= o
Here fn = S e f(y) d 6 on = 0 n 0 o

0

A = -1, B = - 2ir o , Cmn 2ro'm,

The small slope method solving the problem of diffraction
on a smooth two-dimensional infinite wave-like surface was
presented in [1]. In the case of periodic surface amplitudes
Tn were sought in the following form:

TS. S. 2 1 i n y  i(r' +rn)f(y)
n - 2 fe en 2

0

L j
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F
"(an +Eb f *e : dy (19)

m m

where an, bmn were constants to be determined. Let the

values T S S " satisfy the following conditions:n

a) ITS 'S " - TS'P. I < constc 3 ' 0 (20)
n n

where e = max If(y)l
05y52%

b) Shift surface along x - axis condition:

i(Y o+r, )x0  S(T [f(y)+x I = e 2)'n on

c) shift surface along y - axis condition:

T S*S'[f e]T = " [f(y)] (22)
n 0 n

Condition (20) will be valid for (18) if

a =A (23)

i(r0 + Yn)-an + bnn ( n  24)

Qmn =-n-m,n (25)

where Qmn =C -

2 2i bmn ( 0 + r) a ) and the

conditions (12) and (13) will in turn be satisfied if

b s0 (26)on

In the article (1] the following expressions were proposed,

L j
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Swhich satisfy (23.) (26):

1
a --- (C + C - 2i(r + o)B )n 2 on nn n n

-i
bmn 2C(r +' ) n-m,n +Cmn +Cnn +Con B n

3. Algorithm, solving the inverse problem.

Let

4

d = (di , d d 'M

Consider the set of surfaceswhich are determined with
the help of functions:

m mn

f(y) - d sin ny + d + +, *cosny

n n n

Let us suppose that we know values of the inverse scattering

function for surface, corresponding to vector do

T (a,) To - -T(-T)

for angles a,, 2' a.

The numerical algorithm for vector do reconstruction

on values To, . T was constructed. This algorithim is

based on minimization of the residual functional with the
help of gradient descent method. Direct problem on each
iteration step is solved with the help of small slope
approximate method. On each step of iterative method of
minimization ,the residual functional was calculated
approximately with the help of small slope method.

Residual functional is determined by following
expression:

L j
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F -* N4

(a.d) R T - Ra .d) (27)
TnM=1

Here =a.

R(a,d) is the inverse scattering functional,

corresponding to small slope method:

R(ad) + ifm( jctg a
m

22
i(m+signtX)y ilctgalf(y)

f e e dy

0

217

S f(y)e-imy dyfmn 2-" f y  'd

0

Coefficients T° were calculated with the help of numerical

method (7) - (17).

RESULTS

Consider the example of solving the direct problem with
the help of IBM PC AT 386-387 computer. The values of

parameters are : 1 = 1.4 , a = 300, f(y) = 0.3'sin y
in numerical algorithm N 50

Numerical Small slope

algorithm method

energy error 0.310-4  0.16.10 -2

CPU time 3 min 54 sec 1 sec

T -0.072 -0.073

T 0.349 - 0.010i 0.347 - 0.005i

T -0.926 + 0.052i -0.926 + 0.049i

L j
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Consider exOmpie6 of Furie coefficients reconstruction
of surface determine function:

4
First simulation was carried out for N=10 , M=l ,d' =

( 0, -0.3, 0.51 ) After 7 iterations vector d : ( 0.000,
-0.300 , 0.503 ) was obtained as the minimum of the
functional (27).

Second simulation was carried out for N=6 M=2

d= ( 0, 0, -0.1, 0.2 0.2 ) After 44 iterations vector

d : ( 0.000, 0.000, -0.092, 0.195, 0.190 ) was obtained
as the minimum of the functional (27).
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r OPTIMIZATION OF TRANSISTOR DESIGN INCLUDING LARGE
SIGNAL DEVICE/CIRCUIT INTERACTIONS AT EXTREMELY

HIGH FREQUENCIES (20-100 + GHz)

Ralph Levy and H. L Grubin
Scientific Research Associates, Inc.

50 Nye Road, P. O. Box 1058
Glastonbury, CT 06033

ABSTRACT

Transistor design for extremely high frequency applications requires consideration of the
interaction between the device and the circuit to which it is connected. Traditional
analytical transistor models are too approximate at some of these frequencies and may not
account for variations of dopants and semiconductor materials (especially some of the
newer materials) within the device. Physically based models of device performance are
required. These are based on coupled systems of partial differential equations and typically
require 20 minutes of Cray computer time for a single AC operating point. A technique is
presented to extract parameters from a few partial differential equation solutions for the
device to create a nonlinear equivalent circuit model which runs in approximately 1 second
of personal computer time. This nonlinear equivalent circuit model accurately replicates
the contact current properties of the device as computed by the partial differential solver on
which it is based. Using the nonlinear equivalent circuit model of the device, optimization
of system design can be performed based on device/circuit interactions.

INTRODUCTION

Twhinfl nf thp ncntentInd nr""a-,C ofSi
S ,n.. seiticonductor devices tor analog applica-

tions is usually performed in two ways. First, the device may be characterized through small
signal admittance or scattering parameters which may be obtained by experiment for exist-
ing devices or by numerical simulation for a new device structure prior to fabrication. From
these results, the devices can be characterized in terms of small signal parameters such as
the unity gain cutoff frequency, ft, and fmax. While these parameters provide a valid est-
imation of the limits of the device operation under linear, small signal conditions, such
estimate will typically be in error under large signal conditions. Under large signal, high
power conditions, nonlinear effects within the device become important. At low frequency,
the nonlinear effects manifest themselves primarily as bias dependent parameters such as
bias dependent transconductance and capacitance. At high frequency these parameters will
also exhibit hysteresis effects due to the nonequilibrium nature of transport within the
device.

As a result of these nonlinearities it is imperative that the performance of the device be
evaluated while embedded in its operational circuit. It is the device-circuit interaction and
resulting performance that is of interest and not simply the device characterization. Since it
is obviously too costly and time consuming to design, fabricate and test a new device and
then design, test, and redesign a circuit around the device in hope of achieving the desired

L performance, an alternative must be found. This alternative is numerical modeling. Funda-
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Fmentally, device-circuit interaction can be modeled using, equations to represent the device
and coupling the external circuit to it through boundary conditions. While this has been
and will continue to be done, it is presently too costly, even on the supercomputers available
today, for all but the simplest of circuits. As a result, devices are approximated by nonlinear
equivalent circuit elements in the large circuit simulation procedures. The adequacy of
these equivalent circuit models has a direct impact on the predicted results.

In an effort to improve these device models Madjar and Rosenbaum [1] and Khatibzadeh
and Trew [2] have developed procedures in which the FET is modeled by a system of non-
linear ordinary differential equations relating the gate and drain currents to the time
dependent gate and drain voltages. The coefficients of these ODE's are determined
analytically, using highly approximate models of the device. The present work is a signifi-
cant generalization of the approach of [1] and [2]. Here the coefficients of the ODE's
representing the device are determined numerically, through a physically based model; in
this case the drift and diffusion equations and the moments of the Boltzmann transport
equation. The resulting ODE representation is then executed, and the validity of the results
are verified at select operating points. With such an agreement established, the equivalent
circuit model can then be used with a higher degree of confidence in a complex circuit
simulation and device/circuit optimization.

This study is based on three concepts. First the entire program is based on large signal
concepts. Most large signal predictions of device performance are based upon small signal
concepts; the assumption being that a 'good' small signal device is also a 'good' large signal
device. Thus quantities such as the cutoff frequency, fmax, etc., have been used to assess
device performance. However, this is not appropriate since the power requirements for
MIMIC applications preclude small signal operation. MIMIC devices will be operated
under large signal conditions, and large signal assessment of device performance is
required.

Second, the compuiaiiofai device physics model is based on the drift and uion°'""
equations (DDE) for the 20-40 GHz range and on the nonequilibrium balance equations
obtained from the first three moments of the Boltzmann transport equations (MBTE) for
the 40-100 + GHz range. The MBTE equations include the effects of carrier acceleration
and velocity overshoot that are increasingly important as the frequency of interest increases
and feature size decreases. Both analyses include the effects of processing parameters on
device performance.

Third CAD compatibility was achieved by linking the DDE and MBTE analyses to
nonlinear equivalent circuit analysis developed under a study sponsored by the National
Science Foundation [3]. The nonlinear equivalent circuit model based on DDE or MBTE
computed characteristics permitted very rapid (less than 1 second of Cray computer time)
calculations of large signal AC performance of a device that accurately reproduced the
more costly full calculations.

Coupling the nonlinear equivalent circuit model with the DDE and MBTE permits, for the
first time a capability of performing fast and accurate calculations that describe
device/circuit interactions. The nonlinear equivalent circuit model is compatible with
commercially available CAD software and would run on a workstation. The nonlinear
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equivalent circuit model has been coupled to a numerical optimization program and used todetermine realistic goals for device/circuit performance.

Physical Modeling

The key element of the simulation is the system of partial differential equations used to
describe the transient transport of electrons and holes in the devices. Drift and diffusion
equations (DDE) are commonly used to describe transport in unipolar and bipolar devices.
While these equations are valid at the low end of the frequency scale, they are incorrectly
applied at higher frequency scales, typically those in the range of 40 + GHz or when
structuial feature sizes are reduced. For GaAs based devices this is in the sub-2500 A
region. When DDE procedures are inadequate the procedures of choice involve either the
moments of the Boltzmann transport equation (MBTE), or Monte Carlo (MC) methods.
Both MBTE and MC procedures are computationally more intensive that DDE
simulations. Unfortunately, Monte Carlo algorithms require the most intensive
computational resources, and arie not presently practical for a CAD environment.

A brief description is now presented of the DDE and MBTE analyses and how SRA's
nonlinear equivalent circuit analysis is based on the results of the MBTE calculations.

Semiconductor Drift and Diffusion Equations

The governing drift and diffusion equations are the continuity equations for electrons and
holes and Poisson's equation:

- V -NJn V(+On) + DnVN + G -R (1)
at

-t = V • P~P V (O+Op) + DpVP + G -R (2)

V = e(N-ND-P+NA) (3)

where N and P are the electron and hole concentrations, respectively, and e is the electron
charge. The quantity within the square brackets represents the electron and hole currents
densities, -Jn/e and J /e, respectively, G represents generation, R recombination, 0& is the
potential, E the permittivity, and ND and NA are the concentrations of donors and acceptor
ions, respectively. The terms Otn and 0 are introduced to account for variations in the
conduction and valence band energy levels. Through bn and 0 p such effects as band gap
narrowing and heterojunctions may be accounted for.

Within the context of equations (1) through (3) materials such as gallium arsenide are
represented by field dependent mobilities with a region of negative differential conductivity
(NDC). While NDC is included in the subject analysis we point out that it is a feature

L never included in the analytical representations of nonlinear devices.
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Moments of the Boltzmann Transport Equations

It is now commonly accepted that the major inadequacy of the drift and diffusion equations
is the use of equilibrium field dependent velocity relationships. Its usage is a statement that
acceleration is to be ignored. The MBTE overcomes this inadequacy.

The nonequilibrium MBTE are obtained by taking the moments of the Boltzmann
transport equation with respect to carrier density, momentum and energy. This yields a set
of governing equations which are similar in form to the equations utilized for multi-phase
flow in fluid dynamics. The governing equations reflect the conservation, or balance laws
of carrier density, carrier momentum and carrier energy and are written down for two
species of electrons namely, the central (small effective mass) and satellite (large effective
mass) valley carriers and one type of hole. Incorporation of holes is both for breakdown
consideration as well as for the possibility of buried 'p' layers in the design of FETS. The
balance equations follow.

Carrier Balance (or equations of continuity):

a nl/a t = -v, (n1V1) -n1r 1 + n2 r2 -R (4)

a n2/a t = -v, (n2V2 ) + nlr 1 -n 21P2  (5)

a n3/a t = -v. (n3V3) - R (6)

where n1 and n2 are the central valley and satellite valley carrier number densities
respectively while V1 and V2 are the corresponding velocities. r 1 and r2 are the
corresponding scattering rates for particle conservation. r 1 represents scattering of carriers
from the r valley to the L valley in GaAs. P2 is the return rate. R represents the net
recombination of electrons and holes, assumed to occur only through the ! valley electrons.
n3 and V3 are the number density and velocity of holes.

Momentum Balance (Newton's Law) for the Central Valley:

a (nlP1)/a t + v • (nlV1P1) + n1P1P3 = -nleFn-VP 1-v 0 o 1 + nl[V1 .V1/2 + T1/ml]vml

(7)

where there is a force contribution due to spatial variations in the effective mass. In the
above the momentum, P1, and the field, Fn, are defined by

P1 mlV1  (8)

Fn = -(V, + Vx/e) (9)

m1 is the mass of the central valley carrier, e is the electronic charge, 4 is the electric
potential and x is the electron affinity. F is the field due to potential differences and
conduction band discontinuity arising from material variations. The partial pressure, t 1, is

L
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related to the central valley carrier temperature, T1, and number density by the perfect gasrelationship, which results from the assumption of Boltzmann statistics,

P = nlkTj (10)

where k is Boltzmann's constant. r 3 is the scattering rate for the central valley carrier
momentum. Contributions to r 3 include impurity, acoustic phonon, polar phonon,
nonpolar intervalley scattering. The effects of electron-hole scattering is accounted for
through on enhancement of the impurity scattering. The term v:o 1 represents the stress
forces. In this study, the stress tensor, o 1, is approximated by the relationship

0 = 1IVV1 (11)

where n I is the viscosity associated with the central valley carriers. Similar momentum
conservation equations can be written for the satellite valley and for holes.

Energy Balance for the Central Valley Carriers:

There are various forms in which the central and satellite valley carrier energy equations
can be described. We choose to cast the energy equations in terms of the central and
satellite valley temperatures, T1 and T2.

a (nlT1)/a t + v. (nlV1T1) + (nlTl' 5-n2T2r 6) =

-2/3[nlTlv. V1 + o 1 :vV 1/k-v, (xvT1)/k ]
(12)

+ 3V1. Vlml[n 1(2r'3-r 1) + n2 r 21-nlVIT1/ml" Vml

In equation (12) r 5 denotes energy relaxation within the central valley plus energy
cA~1arge wit the satellite valley; ' 6 denotes energy exchange between the satellite and
central valley. All energy exchange between electrons and holes is ignored. A similar
energy conservation equations can be written for the satellite valley electrons and for holes.
In the energy balance equation for electrons and holes equations the contribution of the
recombination have not been included.

The potential is related to the total number density through Poisson's equation

v. vo = e[(n 1 + n2 -n0 ) -(n3-P0)] (13)

where no is the donor density, po is the acceptor density and c is the permitivity.

In two dimensions, the complete problem description requires 13 equations consisting of 3
continuity equations, 6 momentum equations, 3 energy equations and a Poisson's equation.
The boundary conditions for potential are the same as used for the drift and diffusion
equations. At ohmic contacts, the boundary condition is given by the sum of the applied
bias and an appropriate built-in potential. The temperature of all carriers are assumed to
be at 300K at the ohmic contacts. The carrier densities at the contacts are fixed at the value
of local doping. For velocities, the normal gradient is taken to be zero.

L j
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-Consideration of the External Circuit

Typically, in device simulations the voltage at the contacts are either fixed at a constant
value or a time dependence is specified. When an external circuit is introduced, the
voltage on the contact is determined by solving the device equations along with the circuit
equation. The external circuit thus represents a boundary condition as far as the device
simulation is concerned.

Transition of the Device/Circuit Results to Systems and Circuit Engineers.

The present study was predicated in two facts: (1) While the ideal way to transition the
technology of device physics and device-circuit interactions is to deliver to the systems
engineer a time dependent code that incorporates all of the partial differential equations
describing the device, and the ordinary differential equations describing the circuit, the long
run times generally associated with solving both the DDE and MBTE algorithms, rendered
this approach impractical for engineers. (2) The approach favored by engineers to allow
practical device-circuit interfacing is to obtain analytical representations of the dc current
voltage characteristics of a given three terminal device, as well as analytical approximations
for the relevant capacitances of the device, and then lump these parameters into a large
signal simulator that solves the following set of coupled ordinary differential equations [3]:

Ig(t) = Igo [Vg(t),Vd(t-tl)] + Cgg dVg(t-t2)/dt + Cdg dVd(t)/dt (14)

Id(t) = Ido[Vg(t-tO),Vd(t)] + Cgd dVg(t)/dt + Cdd dVd(t-t2)/dt (15)

In the above the terms t0 , t1, t2 , represent time delays associate with transit of carriers
between the gate and drain, drain and gate, and source and gate, respectively. The
capacitive contributions are functions of the gate and drain voltage, with the time delays
appropriate to the equation in which they appear. Equations of the type represented by
equations (14) and (15), which are "SPICE"-like equations, are then typically coupled to
harmonic balance programs.

Application of standard numerical optimization techniques with two-dimensional systems
of partial differential equations (DDE or MBTE) is conceptually straightforward.
However, implementation requires large computer resources, making it of limited interest
to device designers at this time. Use of the equivalent circuit analysis, equations (14) and
(15), results in very fast calculations that could be performed rapidly on a personal
computer. The issue then becomes the accuracy of the equivalent circuit model. Other
researchers [1] and [2] determine the coefficients and time delays from analytical
considerations. This is a useful approach for device designs and materials in operating
regimes that are well understood. The intent of the present work is to extend the utility of
the equivalent circuit model to materials, designs and operating conditions that are not well
understood. To achieve this goal the coefficients and time delays for equations (14) and
(15) are derived from solution of two-dimensional systems of partial differential equations.
This procedure obviates the need to make approximations that permit analytical
expressions to be written for the coefficients and time delays in (14) and (15). It also
permits extension of the analysis to other device designs and complex doping distributions.
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The procedures for obtaining the terms relevant to equations (14) and (15);

Cgg, Cdg, Cgd, Cdd, to, t1, t2

involves five broad steps. These are identified below.

(1) From the DDE or MBTE algorithm the dc characteristics of the device are obtained.

(2) Perturbations of the dc characteristics are obtained as a function of gate and drain
voltage. Small changes in the net charge on the drain and gate contacts are
computed as a function of changes in gate voltage on the gate contact; leading to
values for C and Cgd. A similar procedure yields involving changes in drain
voltage lead to values of Cgd and Cdd.

(3) Time dependent calculations demonstrate that there are transit time delays
associated with the imposition of a signal on the gate contact and its observation on
the drain contact. Similarly a change in voltage on the drain contact will have its
effect on the gate contact delayed. Time dependent DDE or MBTE calculations are
performed and the time delays associated with this are represented by the terms to
and t1 . Time delay associated with the source-gate loop is represented by t2.

(4) The above parameters are incorporated onto the ODE solvers of equations (14) and
(15).

A flow chart describing the above is shown below.

DDE or MBTE I DDE or MBTE
DC Solutions Time Dependent Solution

1 C~dCdg, Cd, CgItop tit~

Nonlinear Equivalent

Circuit Model

The advantage of the ODE solver over that which incorporates solutions to the partial
differential equations is engineering time. A system of ODE solvers that can be used to
replicate the output of the two-dimensional physically based models could be effectively

[used by circuit engineers to represent the device in circuit codes. It is worthwhile noting j
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that alternative formulations for fast calculations can be considered; e.g., quasi,
two-dimensional analysis of 'Snowden and Pantoja [4]. To use such an analysis, the
predictions would be calibrated against an MBTE solution-for the operating conditions of
interest.

RESULTS

The above equivalent circuit model was compared to the drift and diffusion calculation of
the FET of figure 1 in AC operation at 20, 40 and 60 GHz with a resistive load on the drain.
Lissajous of these calculations are presented in figures 2 and 3. Comparisons of three
power gain calculations at the same frequencies are shown in table 1. The lissajous, after
the initial transient, and the AC power calculations are well represented by the equivalent
circuit analysis.

Large Signal Circuit Dependent Results at 94 GHz

Large signal circuit dependent operation at 94 GHz was studied by connecting a 0.25
micron gate FET to a resistive load as shown in Figure 4. The drain battery voltage was set
at 3 volts. Since the computed current levels in the device were dependent on the analysis
used, the resistor was sized to have a one volt drop under DC conditions for a gate width of
300 microns. A sinusoidal voltage was applied to the gate at an amplitude of 0.5 volts and a
frequency of 94 GHz. The gate and drain voltages and currents are presented in figure 8 as
a function of time. The computed contact currents become periodic in time (steady AC) in
less than one cycle and show sinusoidal periodic behavior at all contacts. Nonlinear effects
which manifest themselves in gain compression, were not apparent at this gate bias level.

Nonlinear Equivalent Circuit Analysis at 94 GHz

The nonlinear equivalent circuit analysis of the recessed gate FET was implemented based
on the MBTE calculations. Curve fits were obtained for 1d (Vg, Vd) and for the capacitive
coefficients in equations 14 and 15. Figure 5 and 6 show the equivalent circuit results in the
same form as the MBTE calculations. The lissajous are seen to have the same shape and
similar harmonic content. It should be noted that while the MBTE calculation required
twenty-five minutes of Cray Supercomputer time the Nonlinear Equivalent Circuit Analysis
required less than one second of time on a personal computer.

Load Pull Calculations at 94 GHz

To demonstrate the ability to perform load pull simulations, such a calculation was
performed by applying a sinusoidal signal at the gate with a magnitude of 0.5 volts. A
sinusoidal voltage was applied to the drain with a magnitude of 0.6 volts and a phase lag of
200* behind the gate signal. This calculation was performed using the DDE, MBTE and
the SRANEC analysis based upon the MBTE parameters. Figure 7 shows the Vg-Vd
lissajous figure for these three calculations. Figure 8 compares the computed output for the
load pull for each analysis. Note again the significant differences between the DDE and the
MBTE calculations.
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To demonstrate the utility of the equivalent circuit model an optimization program was
mated to the equivalent circuit model. The optimization program drove the gate and drain
voltages sinusoidally with an imposed phase delay:

Vg = Vg + AVg sin (wt) (16a)

0
Vd = Vd + &Vd sin (wt-o) (16b)

The following optimization problem was posed: For fixed Vgo = -2 volts, Vd° = 4 volts
and AVd = 1 volt what values of AVg, and o will provide a power gain of 8 db at an input
power of 10-2 watts, AVg was constrained to be in the range 0AV r. 15 volts. This
problem was solved at a series of frequencies from 10 GHz to 50 Gz using a
Quasi-Newton optimization procedure with BFGS updating. For frequencies from 10 to 20
GHz the desired power gain of 8 db was achieved. Above 20 GHz the power gain
decreased as a function of frequency as shown in figure 9. Solution of the above problem at
each frequency required 30 to 90 AC device calculations. This would be unreasonably time
ronsuming and expensive for a drift and diffusion analysis even on modem supercomputers.
Using the equivalent circuit model each optimization requiring 30-90 AC steady state
device calculations took approximately 1 minute of time on an IBM PC.

CONCLUSIONS

Using physically based research algorithms a nonlinear equivalent circuit analysis of a
transistor operating at extremely high frequencies (20-100 + GHz) can be generated. The
nonlinear equivalent circuit model reproduces transistor contact current in less than one
second of computer time that required approximately 20 minutes of Cray supercomputer
time suing the full physically based models. With this accuracy and concurrent run time
advantage, tranditional optimizatiton techniques can be brought to bear on the
device/circuit interaction problem.
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F 1

ACTIVE CHANNEL

BUFFER LAYER

SUBSTRATE

Figure 1. FET Schematic from Reference 5.

PHYSICAL PARAMETERS FOR THE 0.5 ,.m GATE LENGTH GaAs
MESFET USED IN THE SIMULATION

GATE LENGTH 0.55 .m

GATE WIDTH 300 gm

CHANNEL THICKNESS 0.15 g±m

SOURCE TO GATE SPACING 0.5 ni

DRAIN TO GATE SPACING 0.6 .tm

BUFFER LAYER THICKNESS 0.2 g±m

GATE METALUZATION ALUMINUM

SCHOTTKY BARRIER HEIGHT 0.80 V

TEMPERATURE 350 K

DOPING OF ACTIVE LAYER 1.5 x 1023 m 3

DOPING AT CONTACTS 3.7 x 10 23 m-3

SUBSTRATE IMPURITY LEVEL 1.0 x 10 23 m 3

Table 1.
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Figure 2. Vg - Vd Lissajous Comparison.
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Figure 3. I-V Lissajous Comparison.
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Figure 7. Vg - Vd Ussajous of Applied Signal in Load Pull Calculations at 94 GHz.
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DRIFT AND NONLINEAR

DIFFUSION EQUIVALENT
CALCULATION CIRCUIT MODEL

20 GHz 3.92 4.03

40 GHz 1.32 1.25

60 GHz 0.78 0.80

Table 2. Ratio of Output Power to Input Power - Comparison of Drift
and Diffusion Calculation and Nonlinear Equivalent Circuit.
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Figure 9. AC Power Gain versus Frequency at Fixed Input AC Power.

L j



A



593

Third International Conference on Inverse Design Concepts and Opt.iniza ion in Engineering Sciences
(ICIDES-TIf. Editor: G.S. Dulikravich. Washington D.C.. October 23-25. 1991.

Design of Transonic Compressor Cascades Using
Hodograph Method
Chen Zuoyi Guo Jingrong

(Dept. of Thermal Engineering, Tsinghua University)
(Beijing, China)

1. Introduction
The design of transonic turbine cascade using Hodograph Mathod is presented in Ref. 1,

2, 3, etc. But up to now, there are no published papers about the design of transonic
compressor cascade using Hodigraph Mathod. It is given in this article.

The design of flow mode in the transonic compressor cascade must be as follows: (1)
the flow in nozzle part should be uniform and smooth. (2) the location of sonic
line should be resonable, and (3) aerodynamic character of the flow canal in
subsonic region should be met. The rate through cascade may be determined by velocity dis.
tribution in subsonic region. (i.e. by the numerical solution of Chaplygin equation). The su-
personic sections A'C' and AD are determined by the analystical solution of Mixed-Type
Hodograph equation. If the shock wave exist that we should consider the flow turn by
the shock wave. (The "shock wave-Mean Stream Line Turn Method" has been used).
2. The compressor canal design using the analytical solution of Mixed-Type Hodograph

equation
In general, the analytical solution of Mixed-Type Hodograph equation (i.e. the

nozzle solution) is used in the design of transonic turbine cascade. Can it be used in the design
of compressor? Our research shows that it is sure.

For example, if we use the generalization Tricomi approximation, the approximate
compressible function is:

Ka ()=b'(a)/ (1 -cba) s  (1)

For this approximation, comparing the approximate compressible function Ka(a) to
the true compressible function K(a), the difference is very small in supersonic region but not
in subsonic region. This is suitable for the design of transonic turbine cascade because the ana-
lytical solution only apply in the supersonic region. But for the design of compressor cascade,
the analytical solution must be used in subsonic region. In order to .decrease the difference,
we should used the other boundary condition to determine the coefficients b and c, this is:

Ko(O)M. -0.3 =K(')IM . -0.3 (2)

dK () 1 -  dK(Cii (3)

dci 1-0 di C-0

L J
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and we obtain the c, b as follows:
Ify= 1.4 c=-0.28236

b= 1.15709
The comparision between K(') and Ka(o) is shown in Fig.2.

3. To determine the leading edge shock wave and coming flow parameters of transonic
compressor cascade

On the basis of the sonicline location which has been given in design and according to the
application of analytical solution in compressor canal, we may obtain the profile C'A' and
DA, along with the velocity distribution in C'A' and DA. (i.e. obtain the geometry of leading
edge and the MaA, MaA see Fig.3)). If the computation model in Fig.3 is used, we can consid-
er that the flow turn proceeded from coming flow Mal00 at the leading edge of suction and
pressure surface respectively. If the turn angles are c5 and 6',

thus 6 + =4

here D is geometric angle of leading edge.
Two shock waves are produced when the flow turn suddenly. The shock wave angles are

#11 j?2, fPl' and Xl' 2 respectively. Thus, from the relationship of oblique shock wave, we
obtain:

tgf1~l)2ctg# 1 [Ma 2sin2 1 -i1] /[Ma2(y +cos2fi) + 2] (4)

tg(f#' - l 2) = 2ctg#, 1LMa sin 2#' - 1] / [Ma"(v+cos2#1 )+2] (5)

(D -(#I fl 2) (6)

Ma2 + 2

Ma-2  + (7)2  1 Ma2sin2#,1 Malsin2 # + 1

2 2

Ma + 2 Ma 2COS 2 ',
Mal - 1 -2 + (8)2 2y 2 2 #, -1 _2 27 1Ma ,sin 1 - 2 Ma sin #, +I1

in previous five equations, the known parameters are Ma 2, Ma 2' and 0, and unknown
parameters are fl#, l 2, #l/1, I/2, Mal, so the solutions are completely dertermined
by the five equations.

L
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F 1
If the shock wave is strong, the flow turn passing the shock wave should be

considered. The model of design is shown-in Fig.4.

We consider that the shock wave strength is determined by the flow turn on

the meanstreamline, i.e. the shock wave angles I1 and #i are determined by

the flow turn angle c5, thus the follwoing relations may be obtained:

2 2ctgfi +2tgof -fi)
M = 2ctg#f sin2 # -,g(#1 - #2 )(y+ co2p;)

Ma 2 +2 M 2  2,s?

m 2 351 7- M._ + (10)
42 27 YMa2 sinS 1- -I Ma2 . 2# +(1

y- a 5 Slflp1 - 1 ..,Aa, SIM
7-1 B12 •1

Now, the flow field can be divided into two parts, the region before the
shock wave and after the shock wave. In the region A'BA, applied the Hodograph
Mixed-Type Equation to determine the profile and velocity distribution of the CIA' and DB.

There are four parameters Ma, 1 , Ma,2, #i , and #; in the Eq.9 and Eq.10. If the Mar2

is determined, thus the relation between f and #; can also be determined, and the design

of Hodograph Method that consider the sudden change proceeded from the shock wave may

be solved with the alternative method. For example, we assume the P; and therefore the lo-

cation of shock wave can be determined, i.e. the location of point B is determined, and the
MaB2 can also be determined. From the Eq.9 and Eq.10, the MaB and 1" may be ob-
tained, and the 6 * may also be obtained. After this, we can obtain the turn-meanline EF. On

the basis of the EF we can solve the velocity distribution on the BA, and the Ma2 can be ob-

tained. So that from the Eq.4- Eg.8 the new #2 can be determined. Put the new 12' in pre-

vious calculation and till it is satisfied.
In the subsonic region, the numerical solution of Chaplygin Eguation can be used. i.e.

aa 4 aZ-(. (11)
o (P!-') +a ( , ) = -- L t)()

am a ml

4. Design example
Using previous theory and mathod, two compressor cascade have been designed. The one

is called J-3-Type cascade, and the other is called Ma-Type cascade which is designed on

the basis of velocity distribution of the compressor cascade which is provided by Ref.4.

Th'c designed parameters of transonic compressor-3 profil are: Mach number at outlet is

0.12, flow angle at outlet is 45 , cascade pitch is 50mm, the Mach number and flow anglej
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at inlet are 50 0 and 1.22 respectively. The designed cascade profile is shown in Fig 5. The
profile coordinates and its velocity distribution are shown in Table 1.

Comparing the velocity distribution of J-3-Type cascade with the calculating of the

Time Marching method, we find the results are in agreement (see Fig.6).
The profile of Ma-Type cascade comparing with the cascade in Ref.4 is also in agree-

ment (see Fig.7).
5. Conclusion
1. The Hodograph Method may be used to the design of transonic compressor cascade.
2. The flow field may be divided into two parts for using Hodograph method design, to solve

the Hodograph Mixed-Teyp Equation in supersonic region and the Chaplygin Equation in
subsonic region.

3. If the strength of shock wave is large, the flow turn by shock wave, the "Shock

wave-Meanstreamline turn Method" is suitable for this design.
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F The Research Progress on Hodograph Method
of Aerodynamic Design at Tsinghua University

Chen Zuoyi Guo Jingrong
(Tsinghua University)

1. Introduction
The Hodograph Method- is a classical method in fluid dynamics. Because it can transform

the nonlinear equation to the linear, So it is Altways used to.res6lve the fluid dynamic equation
in the early time. For example, the well known Karmen-Jein formula is obtained from
Hodograph equation. Then the Hodograph method is widely applicated in the research of
transonic flow. Due to the Mixed-Type character of transonic flow equation, the Hodograph
method may be the only accurate method to solve the transonic flow equation. In the 1970's,
the Hodograph method start to be used in the inverse problem of fluid dynamics. (i.e. design
problem, such as the work by Hobsen and karadimas (Ref.]) in the 1980's., we have done sys-
tematic reserch work on Hodograph method in Tsinghua University, and have taken much
progress as the follows.
1. Research progress on the analytical solution of Hodograph Mixed-Type equation

The various analytical solutions of Hodograph Mixed-Type equation are presented in
Ref.3. If we use these solutions to solve the inverse problem, especially desigr the cascade pro.
file, there are limits on various boundary condition, We can't always find right solution under
any boundary condition. So that the application scope may be restricted. The differences
among various analytical solution of Hodograph Mixed-Type equations and their applica-
tion conditions have been presented. It shows the differences are obvious (see Fig.1).

The application scope of the four nozzle-solution of Hodograph is shown in Table. 1.
All the nozzle-solutions of Hodograph were straight line corresponding with the mean

stream line before. If we use them in the inverse problem of cascade, the best one is prefered to
be curve mean streamline. The nozzle-solution of Hodograph corresponding with the curve
mean streamline is presented. We get the analytical solution of Mixed-Type Hodograph
equation that is corresponding with the parabolic coordinates, as shown in Fig.2.

The relationship between the parabolic and rectangular coordinates is:

x = I( 2 (1)
2= 2

y = j. (2)

Thus the vorticity of V may be represented by:

L -.
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V xV= 2  .(v( . +.,) (3)

It satisfies:

=4 + n2 pV (4)

.alj _ 7 v (5)

If the equivalent velocity is introduced:

=[ 2 v (6)
? = + (7)

the similar Mixed-Type Hodograph equation can be obtained:

2 2T+K()-T- = 0 (8)
au aO

2. Design of the transonic turbine and compressor cascadeusing Hodograph method
we have presented the new method to design the transonic turbine and compressor cas-

cade using Hodograph. This method is that applicated the Chaplygin equation numerical so-
lution to solve the subsonic area and applicated the analytical solution of Mixed-Type
Hodograph equation to solve the supersonic area.

The differential equation for numerical solution of Chaplygin equation is:

k k I,k

+ (Q~ ,k 2~ 12(9
~P+(k + 4k 2[2P, / S, + 2 Q / 1(9)S 2 ,=-Ik 21 Ik ,k - ik

The profile coordinates equations are:

S P, Ma[ dO L scosOdMa (10)

Lp Ma dMa

L
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F1
Y-Yo= h!-- cos 4P +Q (. ) dlsinOdMa" (1)

p Ma dMa A

The profile coordinates equations which are obtained by the analytical solution of

Mixed-Type Hodograph equation are:

/ 2

MaX j -l +K4,(r) O(12)

ao 0
-1' Csin (.1 +f K ()( 2 (13)

0=f 9  Ma a a

Mao=f _1 sn + K ,,t. (a) ( 0 (13)

Ma ao

The location of shock wave is the importantance in design. The method of profile design
by the given location of shock wave is also presented. The comparision between the design
shock wave locatgion and the experiment is shown in Fig.3.
3. The basic equation of three dimensional Hodograph method

On the basis of the general theory in three dimensional flow and the correspondence be.
tween the physical surface and Hodograph, the basic equations of three dimensional

Hodograph method have been obtained.
Using the concept of equivalent physical surface and equivalent Hodograph, we obtain

the different equation of streamfunction with Hodograph coordinates and integral equation

for returning from the Hodograph to the physical surface.
The correspondence between S1 flow surface and equivalent physical surface is shown in

Fig.4.
The streamfunction equation of Hodograph corresponding to the S1 flow surface is

a +A a0 2 2LI +2 AL ~+ L+A _ (14a -2 2 ao) 'ad~O 'aD (14)a-

here & is equivalent velocity. 0 is the equivalent flow angle.
The relationship between the equivalent velocity and true velocity is

e =A +Bi
1 2 on)

B=k- (roo + r 20 - n (15)
L 3 0
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Similarly, we can obtain the streamfunction equation of Hodograph corresponding to the S2
flow surface, that is:,

l2 2 -' a2 (16a .._ + ±0 + z -0 + 'j o0 
+ jAsa-"0 =0 (16)

A) 2a@i a~aO

The correspondence between S2 flow surface and equivalent physical surface is shown in

Fig.5.

Therelationship between the equivAlent velocity and actual velocity is:

n
AK 6 =wz--n(co + wr) (17)

n

BKS = 0)? - n"F"(0) + wr) (18)
0n

The integral equations for returning from the Hodograph to the S1 surface are:

- r L o oao bp aO +F a o

JaO bp-aO a6) aj bp aw
3Ct)a3t)

(34/)ao2 a 4 )(342
___ 4Ta p aD 4- -aO 4/ O (00 - i: {01 jan. p +4  + (20)

The integral equation for returning from the Hodograph to the S2 surface is:

K 4)2 aK e/)2Scos,[aK- a, -, aK 303
3aK4 a0 - a Id (22)

6K1 ao 30 o a@) ao 'w
ao ajo

L
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F
e4 )2 )/2SsinD FaK4 , K4 a K 4 aO ... o,

r-ro -K 4  K+  (+) ( ) + &K a-A (23)
0w ah )

4. The aerodynamic design of Hodograph is revolutionary surface

On the basis of the three dimensional flow Hodograph method, the aerodynamic design

of Hodograph in revolutionary surface is presented.
The Hodograph equation corresponding to the revolutionary surface can be obtained

from Hodograph equation corresponding to the SI flow surface.

2 a a* 2b a

'2M b Ma* 3)2a0 I aMaMa +LA b aM' # am bao2 jM'

Slab ;o _[ 1 o + 2 + 2 + .-aba 1 a b

ba aM aO aO aM, g- 2  b aM ,aO "

10 (23)
LM a b aM: PaMa *302a

The integral equations for returning from the Hodograph to revolutionary surface are

1 (31//t)2 e3/)

z-z 0 ,.0 ~ * * **_
Map Lp A- A b-pMa 4 p,/ aMa

* •

aMa aMa

+ Ma ak A (24)
+ -p aMaj

1(L (31/)2 e4 /)2

hp Mfa cos0Osin0 bak a(- A a ( L)b
0- J(r+ztg,)Ma p _a aD b +Ma" 20/ a/ aMaaMa aMa

Ma' " ]do (25)+ b'P aMa"(5

In order to determine the supersonic region, the analytical solution of Hodograph

Mixed-Type equation corresponding to revolutionary surface is presented.
From the streamfunction equation:

L j
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F 1
d M * 2 (26)

Laar 3 dMa P aMa f " LMa PaMa _J- 0

If put the

F(a) [2+ . J/(Ma*K') (27)

thus the streamfunction equation can be transformed to the analytical solution equation
which is similarly the plane flow

2 2F(T-: + -0

Design example:

Design parameters: r= 1.29 M.,,=0.2238 0 o =0

T.= 1490 k 02= 73 M2 =1.15
R0= 300mm a,= 26.56 H0 =50.05mm

The profile in the revoluitonary surface with the Hodograph Method is shown in Fig.6.

5. Summary
The research progress of Hodograph method on aerodynamic design in Tsinghua Uni.

versity has summrized in this article. i.e. (1) There are some restricted conditions in applica-
tion with Hodograph method to design the transonic turbine and compressor cascades. (2)
The Hodograph method design is suitable not only to the transonic turbine cascade but also
to the transonic compressor cascade (3) The three dimensional Hodograph method will be de.
veloped after obtaining the basic equation in three dimensional of Hodograph method, as the
example the transonic turbine cascade design of Hodograph in revolutionary surface is pres-
ented.
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ABSTRACT

Without claim to completeness, some recent progresses achieved in deve-
lopment and application of numerical optimization methods are presented.
With emphasis lying on aeronautical problems, the activities in the field
of aerodynamic design by CFD methods, structural optimization and determi-
nation of optimal flight trajectories are surveyed. As the reviewed me-
thods show different levels of mathematical background, capability, matur-
ity and applicability, the need'for a stronger exchange of information and
experiences between the different disciplines emerges as a key factor for
increasing the impact of numerical optimization strategies in the design
process.

INTRODUCTION

As a combined result of strives for improving the quality of new designs
while reducing associated production costs and of recent progresses in
computing power and numerical methodology, development and application of
numerical strategies dealing with the optimization problem are drawing
considerable attention at universities, research institutes and industries
in Germany.

The objective of this paper is to report about some of the most recent
activities considered to be representative of the current status and not
that of reviewing all new contributions in this field. Due to this aut-
hor's affiliation to the aeronautical community, the selection has been
purposely restricted to applications pertinent to the aerospace field.
Furthermore, optimization related activities which are object of indivi-
dual papers presented at this conference has been not considered herein,
(1),[2] and (3]. Hence, it would be misleading to argue from this review
that numerical optimization is not being pursued in other scientifical
disciplines or industrial branches or that no other methods than those
presented here are presently in development in this country.

In the presentation of the selected methods the main aim is to provide
rather general information covering the type of problem considered, the



motivation and the goal(s) of the used approach, together with a short
description of the algorithm employed and a brief review of the results
achieved. A more technical description of the methods themselves should be
found in the'referenced sources.

The reminder of this paper is organized as follows. In Section I optimiza-
tion of aerodynamic shaping is considered. An optimization method for
structural problems is presented in Section II. Application of different
methods for the determination of optimal flight paths is discussed in
Section III. Finally some author's comments are given in the concluding
remarks section.

SECTION I: AERODYNAMIC DESIGN BY CFD METHODOLOGY

The whole process of aerodynamic design can be divided into two phases. In
the first phase - that of preliminary design - the major design variables,
such as configuration arrangement, general dimensions, wing planform and
loading, are determined by parametrical studies involving interdiscipli-
nary optimization of overall system efficiency against the mission requi-
rements. It is during the following phase - that of detailed design - that
the external contour of the configuration is worked out in details aiming
at maximising the aerodynamic efficiency. Traditionally, aerodynamic de-
signers used analysis of wind tunnel model testing for improving the de-
sign in an heuristic cut-and-try process. As a result of increasingly
stringent performance requirements and of growing complexity of modern
aircraft systems, wind tunnel testing time and associated costs increased
almost exponentially with succeding generations of aircraft. This cost
escalation has provided considerable incentive for the development and
application of numerical simulation techniques. Relying on computer solu-
tion of mathematical representation of flow phenomena, the new discipline
known as Computational Fluid Dynamics (CFD) is becoming one of the basic
engineering tools in configuration design. Computers used as digital simu-
lators of flow physics are well suited to analysing a wide range of candi-
date configurations, thus increasing the prospect that an optimum design
will be identified. A systematic investigation of all possible geometrical
variants is, however, still too time consuming and expensive for the pre-
sent computing resources. Therefore, the greatest potential of CFD metho-
dology should be individuated in the possibility of defining the configu-
ration shaping capable of producing the desired aerodynamic character-
istics. Of course, such possibility does not exist in wind tunnel experi-
ments or flight tests. While the importance of such design procedures is
generally well understood, difficulties connected with the solution of a
nonlinear and, in the general case, ill-posed mathematical problem have
sofar prevented the establishment of a single 'ideal' approdch capable of
solving any arbitrary design problem. Instead, several different appro-
aches have been proposed for solving particular problems.

The Inverse Approach.

In the inverse formulation, a surface geometry is sought for which some
flow variable distribution is prescribed, as for example the classical
inverse methods which provide the airfoil geometry required to generate a
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given pressure distribution. Following this approach, de mattos and Wagner
at the University of the Army, Munich, developed an efficient technique
for the aerodynamic design of transonic wing sections with prescribed
pressure distribution, [4]. The method belongs to the class of the itera-
tive direct-inverse methods, in which the difference between the target
and the pressure distribution computed by an analysis code is fed into an
inverse algorithm capable of driving it to zero by successive relofting of
an initial geometry. The basic ingredients of the present method are a
finite difference code solving the full potential equation for the invis-
cid analysis of transonic flows about airfoils and an inverse algorithm
based on the surface blowing technique. The analysis code developed by de
Mattos in [5] is utilized to solve the transonic, full potential equation.
Its formulation is written in steady, conservation-law form for a twodi-
mensional body conforming curvilinear system. The Holst and Balhaus arti-
ficial density scheme is employed for the spatial discretization of the
governing equation. Convergence to steady state is achieved through itera-
tion in pseudo-time using the AF2 approximate factorization algorithm. The
potential values on the profile during a design cycle are updated from an
expression derived in the curvilinear coordinate system to satisfy the
prescribed pressure distribution. This produces a blowing contravariant
velocity distribution that is used to reloft the section geometry in order
to recover the zero normal contravariant velocity used as boundary condi-
tion in the analysis loop. The blowing contravariant velocity is calcula-
ted using a second-order accurate residual expression. Essentially, this
method can be considered a refinement of the procedure of Gally and Carl-
son (6], whereby the application of the more efficient AF2 approximate
factorization scheme instead of the SLOR procedure in the analysis method
and the more accurate computation of the normal velocity in the blowing
algorithm are to be regarded as significant improvements.

As most of the 'pure' inverse algorithms, the procedure just described
does not guarantee that the new airfoil shape will be practical or physi-
cally meaningful. In particular, in generating the airfoil modifications
for arbitrary pressure distributions the procedure can yield open trai-
ling edges or contour cross-overs with unphysically negative trailing edge
thickness. To suppress insurgence of such undesirable features, the con-
tour lines are rotated about the leading edge. Moreover, in order to avoid
convergence problems, the contour displacement is underrelaxed. The whole
procedure is then applied to the new airfoil geometry and the design loop
design iterated until a convergence criterion has been reached.

Assuming as initial geometry the NACA 0012 profile three design exerci-
ses have been presented in [4] for validating the proposed design method.
In the first case the design of a laminar profile is considered. Aiming at
maintaining laminar flow for as much extent as possible along the cord, a
pressure distribution exhibiting a plateau over a vast portion of the
chord has been prescribed as design target, attempting to avoid the unfa-
vourable pressure gradient of the original airfoil, figure 1. The result
after hte 12th iteration can-be considered convereged for all engineering
purposes. Figure 2 compares the profile designed by the present method
with the original profile: the airfoli maximum thickness was increased
from 12% to approximately 14%, while its location is moved further down-
stream at about 35% of the chord. The second case considers the elimina-
tion of the shock that existed in the original airfoil for a transonic
freestream condition. This procedure represents a typical concern in the
design of modern commercial airplane. Figure 3 presents the converged
pressure distribution obtained with the present method as compared with
the original distribution for the NACA 0012 and with the target pressure.
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The authors report that this case required 22 iterations to converge, and
that a large underrelaxation was necessary to stabilize the relofting
procedure. An expanded view of the generated profile as compared with the
original one is shown in figure 4. Also in this case the designed profile
is about 2% thicker than the original one, so that a wing with the new
profile would benefit from increased fuel capacity and decreased structu-
ral weight. In the third case, the program ability to recover a known
geometry was checked. The target profile was obtained as a derivation of a
NLF-0415 profile by scaling the maximum profile thickness to 12% and bu-
iding a symmetric profile with this thickness distribution. Using the
analysis code, the pressure distribution was calculated over the modified
profile, and this was specified as target for the redesign exercise. The
pressure distribution on the NACA 0012 - which was again taken as starting
geometry - the target one and that obtained for the designed profile are
compared in figure 5. A comparison of the corresponding geometries is
shown in figure 6. It is completely evident that method reproduced exactly
the target geometry, despite having started from a very different profile.

All these three cases demonstrate the program ability to solve effi-
ciently the proposed problems. The scheme exhibits good convergence cha-
racteristics which the authors credit to the fact that the inverse algo-
rithm used here deals directly with the flow physics rather than employing
mathematical optimization. Improvements aimed at reducing computational
costs by using replacing the onset flow condition presently used at thebeginning of each design cycle with the perturbated flowfield computed at
the previous are planned. Incorporation of a boundary layer routine for
taking into account viscous effects is currently under way. An extension
to the three-dimensional case for covering both the cases of rotary and
fixed wings is envisaged.

The numerical optimization approach.

For practical design purposes, however, the inverse formulation suffers
from the lack of a mechanism to control the geometry of the resulting
contour, so that it cannot be used for constrained design purposes. Toovercome these drawbacks, many researchers sorted out of using optimiza-
tion strategies. Here, in principle, any available analysis code can be
used as 'black-box' to provide the data required to approach the target
function iteratively. One of the biggest advantages of the optimization
approach is the possibility to take into account the geometrical con-
straints into the iterative process, either by selection of proper varia-
bles or by inclusion of some penalty terms into the object function that
should be minimized (constrained optimization). Of all acceptable geome-
tries, the optimization algorithm will then determine the one that minimi-
zes the object function. In general, the optimization approach is well
adaptable to complicate cases where it is difficult to determine the de-
pendance between target function and design vaciables, i.e. in the aerody-
namic problem, the dependance between desired flow characteristics and
geometry. Hence numerical optimization can and in fact has been applied to
three dimensional problems with consideration of geometrical constraints
but its application can require very large computational power, since it
involves the analysis of the candidate design at each iteration step. The
total amount of computing time depends essentially on: a) the method used
as analysis tool; b) the number of optimization steps to convergence; c)



the quantity of information required by the optimizatioh algorithm at each
iteration step. When using time-consuming analysis code, i.e. Euler or
Navier-Stokes solvers, the number of analysis computations should be kept
as low as possible. As the random search requires only one analysis com-
putation at each iteration, while multiple analysis computations are re-
quired to define the gradient of the object function with respect to the
design variables, there is a trade-off between the number of iterations
and their computational costs.

To find out the best strategy for aerodynamic applications, Bock at
Dornier compared a random search method based on evolution theory to an
universal gradient search method (7]. By application of the multi-level
evolution theory GRUP 18] and of the COPES code of Vanderplaats (9] to the
relatively simple problem of wave minimization for a two-dimensional pro-
file, Bock found that the evolution theory requires a much larger number
of iterations than the gradient code. Basing on this experience, Bock
proceeded then to couple the COPES code to three different analysis codes
in use at the aero design department at Dornier. For body shape optimiza-
tion at supersonic speeds, the COPES code was combined with the Euler
space-marching method of Rieger 10]. This is a finite volume method sol-
ving the inviscid equations in conservative form. By restriction to purely
supersonic flows, the problem becomes hyperbolic, so that when balancing
the flux across the surfaces of each finite volume the flux of the volume
layer normal to the stream direction can be deduced from the values of the
upstream layers. A Runge-Kutta integration method is used to define the
flux values in downstream direction. Although the Euler method is capable
of treating arbitrary bodies, the optimization procedure was first re-
stricted to bodies of revolution for sake of comparison with results ob-
tained using linearized potential equatial and slender body theory. In
order to convert the problem into one of variable optimization, the body
contour is approximated by superimposition of Legendre polynomials and a
triangular function, the latter taking into account that optimum shapes
for given thickness might have a kinked contour. To demonstrate the effi-
ciency of the combined code, the classical Sears-Haack problem to determi-
ne the body of minimum drag having a given volume was examined. Starting
from a parabolic arc contour and a smaller volume than the target one, the
optimization progress of the design objective (drag) and of the constraint
(body volume) computed by the code are presented in figure 7. in order to
save the computer time the analysis code was run using a coarser grid at
the beginning and switching to a finer one after the step N=30. The steps
N=l to N-9 are small contour variations prescribed by input to establish
the initial gradient; after step N=10 the COPES determines automatically
the design variable variations. Examination of the drag and volume histo-
ries reveals how the COPES proceeds to the find the optimum. In the first
steps the code increases the body volume for recovering a feasible design
condition (the starting body violates the volume constraint). Then the
wave drag is decreased, while the volume is maintained constant. In figure
8 the optimum shapes computed for Mach numbers equal to 1.5 and 3.0 are
compared to the Sears-Haack body, which is the analytical optimum under
the assumption of linearized theory and slender body simplification. Unli-
ke slender body theory results, which are independent of the freestream
Mach number, the present method show a definite Mach number dependancy.
Interestingly the Euler/COPES optimum shape for the smaller Mach number is
closer to the Sears-Haack booy, whilst the wave drag value of Mach number
3.0 are nearer to the slender-body value. According to Bock, these discre-
pancies can be explained bearing in mind that the Sears-Haacks body has a
vertical tangent and therefore a small subsonic flow region at the two
pointed ends, which cannot be calculated by the present space-marching



Euler method.

For the design of efficient transonic wing sections Sobi-eczky developed a
method [ll]-which allows to modify the geometry of an existing airfoil so
that, for a given flow condition, a shockfree flow is obtained. Bock has
coupled this method to COPES to build an optimization procedure where some
of the Sobieczky's input variables can be used as design parameters to
find a profile which is not only shockless but also represents an optimum
with respect to a certain objective and fulfils given constraints.
A full potential analysis code and a boundary layer method for the evalua-
tion of the viscous displacement thickness are part of the optimization
procedure. The practical capabilities of the method are illustrated by the
following redesign exercise. Starting from the Dornier A-7 profile, Bock
was able to improve the aerodynamic efficiency of about 12% (lift-to-drag
ratio from 39.7 to 445.) while maintaining the same maximum thickness (
t/c - 14.4%) and the same trailing edge thickness. The figure 9 shows the
comparison of the contour (displacement and wall), the characteristics in
the supersonic region, and the pressure distribution for the initial air-
foil (already shock free) and the optimized airfoil. As a large number of
additional test calculations not shown here proved, it is very easy to
redesign existing profiles for improving transonic performance. Off-design
behaviour can be easily considered by inclusion of a multiple-point opti-
mization strategy.

Finally Bock coupled the COPES code with a subsonic multielement airfoil
code package, which is able to calculate high lift characteristics of
flapped airfoils in presence of trailing edge separation. The combined
procedure has been used for finding the relative position of flap and main
airfoil capable of yielding the maximum lift, figure 10. As the design
objective depends on only two variables (horizontal and vertical transla-
tion of the flap with the regard to the main airfoil), the optimization
history can be graphycally displayed, figure 11. It can be seen that the
reference point is moved very close to the main profile, where the cle-
arance constraint (minimum channel gap) becomes active. As it turned out
the analysis code looses accuracy when the slot width become smaller.
Nevertheless, the optimization procedure has been successfully applied to
optimization of translation and deflection of three-element systems.

At the DLR Institute for Design Aerodynamics different inverse and ana-
lysis tools are in intensive use for the aerodynamic design of airfoils,
wings and nacelles. In order to adapt these methods for the requirements
of the design tasks, several improvement have been incorporated [12). On
the other hand, first steps toward an approach based on a numerical opti-
mization technique coupled with an analysis tool have been performed (13]
and (14). Figure 12 shows a block diagram of an iterative procedure for
the design of a supersonic wing. Here, the wing is described by a set of
design variables which are weight coefficients of Legendre polynomials.
For this wing, the flow field is calculated using a method solving the
Euler equations. The calculated flow field is used to define the object
function. With the object function and the informations from the previuos
steps, the numerical optimization technique calculates a new set of design
variables. if a given convergence criterion is not reached, the next ite-
ration cycle is performed. The use of Legendre polynomials leads to a
suitable description of the wing surface and allows incorporation of geo-
metrical equality constraints like leading edge radius and wing volume by
a reduction of the number of design variables. Figure 13 shows the optimi-
aztion history for a conical delta wing with a leading edge sweep of 75
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degrees, an onflow Mach number equal to 4.5 and a design lift coefficient
equal to 0.15. Here a Legendre polynomial of order N-5 is used which leads
to a total, of 9 design variables. The object function is the lift-to-drao
ratio L/D. The optimization starts on a coarse mesh with 24 x 10 cells and
continues on a medium and a fine mesh. The figure shows that most of the
variation of the design variables is done on the coarsest grid while only
small changes occur for the medium and fine meshes. Figure 14 shows the
effect of an increasing order of the Legendre polynomial (i.e. increasing
the number of design variables) on the optimal lift-to-drag ratio. Isomach
lines in a cross-section for the starting configuration and for the result
of the configuration for an order of N-3 and N-5 of the legendre polynomi-
al are plotted in figure 15. It can be seen that for increasing number of
design variables the strength of the crossflow shock decreases and the
optimal L/D is increased. The procedure described above can also be used
in an inverse mode where the object function is now an integral over the
difference of the prescribed and the calculated pressure distribution.
Figure 16 shows the pressure distribution as function of the arc length.
In order to validate this approach the target pressure distribution was
calculated for a given wing with the same analysis method used in the
optimization loop. The result of the design procedure shows very small
discrepancies to the given pressure distribution while the pressure as
well as the geomtry of the initial configuration are far away from the
result. A fisrt step for an aerodynamic design by an approach based on an
inverse tool coupled with an optimization technique has been performed.
Here, the input of the inverse method for the design of transonic airfoil
is changed by an optimization. Figure 17 shows an application of this
procedure. The starting airfoil has a lift-to-drag ratio equal to L/D-48.7
corresponding to a lift coefficient of CL - 1.1 at a Reynolds number of
2.5 millions and an onflow Mach number of Ma - 0.60. After 114 iterations
cycles a new airfoil shape exhibiting an efficiency of L/D - 102.3 is
obtained.

SECTION II: AN OPTIMIZATION SYSTEM FOR SPACE AND AIRCRAFT STRUCTURES

Methods solving structural optimization problems have since many years a
widespread use in aerospace industries. Especially for complex design
problems, their application leads to definition of optimal layouts which
fulfill all constructive requirements. So far, the structural weight has
been the objective function most commonly used. Design of space and air-
craft structures, however, requires consideration of additional parameters
which have to taken into account during the optimization process. In the
design of modern airplane, for example, structural weight savings may
introduce unacceptable limitations on aerodynamic performance by static
and dynamic aeroelastic phenomena. For spacecraft structures different
requirements have to be fulfilled during the launch phase and the operati-
on in orbit. Optimization methods are the most rationale way to determine
unique and optimal compromise solutions. To solve these problems, the
optimization system LAGRANGE is being developed at MBB with the technical
cooperation from the universities of Bayreuth, Munich and Siegen, 115] -
(17) . The system is applicable to the design of high performance structu-
res involving large scale optimization problems with multidisciplinary
objectives and constraints to be solved simultaneously. The development is
focused on three main topics: optimization models, structural analysis
with sensitivity analysis and optimization algorithms. The optimization
models are based on the general nonlinear programming problem. The design



variables are cross sectional areas of trusses and beams, wall thicknesses

cf membrane and shell elements, laminate thicknesses of layers in composi-
te elements or nodal coordinates for geometry optimization problems. The
constraints in form of inequalities may be any limitation of displace-
ments, stresses, strains, buckling loads, dynamic response, heat loads,etc. A variety of different optimiaztion algorithms (such as inverse bar-rier function, method of multipliers, sequential linear programming, re-
cursive quadratic programming, generalized reduced gradients, etc) are
available which can chosen depending on the actual design problem. The
structural and sensitivity analysis are based on finite element methods.
Static, stability dynamic, aeroelastic and flutter modules have been im-
plemented. The finite element package is MSC-NASTRAN compatible as far aspossible. Special features include the handling of laminated composites,
which allows the optimization of each layer. Important for parctical ap-plications is the integration into the existing CAE-environment by use of
standard interfaces.

A variety of structural optimization problems has already been successful-
ly performed with LAGRANGE. Present development efforts are focused on the
improvement of the analysis and sensitivity modules for dynamic response;
structural stability and heat transfer. Furthermore the optimization mo-
dels have to be extended especially in order to improve the capability of
geometry optimization. The following examples have been chosen for illu-
strating the current capabilities of the LAGRANGE system. The first exam-
ple refers to the sizing of an alluminium frame located at the engine
inlet of a combat aircraft. For the formulation of optimization problem itis important to know that a milling machine will be used to realize avariable thickness distribution. So a large number of design variables
can be defined in order to calculate the optimal thickness of the frame.
The finite element model is shown in figure 18. It involves 975 degrees of
freedom, 930 elemnts and 97 loads cases. The objectivc function is the
weight. The constraints are used to ensure static requirements. Stability
constraints are taken into account to prevent buckling and lateral insta-
bility of webs. Since the cinstraints has to be satisfied for each single
load case a very large number of constraints (NG=92 829) is obtained.
Together with the thickness design variables (N-187) it makes up a large
scale problem. The initial design has infeasible buckling loads and stres-
ses. The optimization algorithm needs 20 iterations to achieve convergen-
ce. Figure 19 shows the optimization history for the buckling constraints,
where the most critical constraint at each iteration is monitorized. The
optimal design fulfills all static requirements and achieves a weight
reduction of about 25% over the initial (unfeasible) design.

To illustrate the interdisciplinary simultaneous optimization a study for
a composite fin of an advanced supersonic aircraft is presented.The two
objectives considered in the application of the multicriterion approach
are the minimum weight and the maximum aerolastic efficiency. Since these
two objectives cannot be met simultaneously, an objective conflict arisesleading to a typical vector optimization problem. The finite element
model of the fin is presented in figure 20 together with the panel model
of the aircraft used to calculate the fin aerodynamic characteristics. The
functional efficient solutions are illustrated in figure 21 where the
aerodynamic efficiency n is plotted against the normalized structural
weight W/Wo. The lower and upeer limits of the effieciency .85 < n < .95
represent the range of practical importance. In this case the design with
n - .89 and W/Wo = 2.83 is chosen as as optimal compromise solution. For
designs with n > .89 the increase of the structural weight is too large in
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comparison to the relatively small improvements of the aerodynamic effi-
ciency. On the other hand, the designs with n < .89 deliver no essential
reductions in weight. This example demonstrates the utility of represen-
ting in graphic form the functional efficient boundary as an effective
help in selecting the most appropriate design.

SECTION IV: NUMERICAL OPTIMIZATION OF FLIGHT TRAJECTORIES

Historically, the optimization of ascent trajectory of rockets has been
one of the driving applications for developing new optimization methods,
more efficient algorithms and related software in the last thirty years.
This can be explained with the stringent necessity of accurate determina-
tion of the best ascent profile in terms of fuel consumption, since the
payload transferable to a given orbit is only a small fraction of the
total lift-off mass of the rocket. Mathematically, the problem is casted
into a set of ordinary differential equations describing the motion of the
center of mass from lift-off to burn-out of the last stage subject to
aerodynamic, gravitational and thrust forces. The purpose of the optimiza-
tion is to determine the time history of the pitch and yaw angles, which
are considered as the control variables, suitable to maximize the payload
for the desired orbit while fulfilling all vehicle and mission con-
straints. In the last years, appearance of non-ballistic, manouverable
reentry vehicles have fostered application of optimization methods to the
descent problem, where the aerodynamic lift is used to change the flight
path for maximizing the cross range and/or minimizing the total head load
accumulated during the reentry. Finally, new space transportation projects
based on two-stage concepts like the German S~nger Study have stimulated
interest in the optimization of high altitude separation conditions of
rocket-type upper stages from airbreathing lower stages.

All these optimization problems are optimal control problems which can-
not be solved analytically unless using severe simplifying assumptions.
These approximate solutions can be usefully employed for preliminary sy-
stem design purposes but must be checked making use of numerical solutions
obtained using more complete dynamic models. To promote and coordinate the
developmental efforts in this field, the German Research Association (DFG)
started a multiyear programme called 'Application-oriented Optimization
and Control (Methods)'. Within the frame of this programme, scientists
from several institutes of the German Aerospace Research Establishment
(DLR) and from various technical universities are-working in close contact
on mathematical foundations of new optimization methods and development,
implementation and application of numerical methods on practical problems.

At the Technical University of Munich the problem of ascent optimization
for a rocket type upper stage of a space transportation system with an air
breathing first stage has been recently investigated, (18]. Since the
separation of these systems takes places at a hypersonic speed at high
altitude with a small flight path angle inclination, an ascent may not be
possible without a lifting capability. However, an upper stage consisting
of a fuselage type body can produce a limited amount of lift even if it is
not equipped with wing. The investigation shows that with the use of effi-
cient optimization techniques this limited lift capability can be exploi-
ted for achieving an ascent to orbit even for a horizontal flight condi-
tion at separation. In addition to the usual point mass dynamics model-
ling, the investigation included pitching moment balance and rotary dyna-



mics effects. It was found that the results based on point mass modeling
are valid also foi the model including- rotary dynamics when the thrust
vector angle is fixed. However, differences exist between, the results for
both models when thrust vector angle is considered as control variable.
This is because an effective use of thrust vector angle would require too
large aerodynamic balancing moment. Thus, thrust vectoring must be re-
stricted so that its potential for improving the ascent performance can be
only utilized to a small extent.

At the Institute for Flight Systems Dynamics of the DLR two new methods
are under development with the primary goal of having efficient software
f or trajectory optimization of aerospace vehicles, [19). The algorithm
presented under the name PROMIS is based on parametrizing the control
function and using the multiple shooting for integrating the systems equa-
tions numerically. The other method called TROPIC is based on direct col-
location for solving the differential equations. Both methods share the
advantage of not relying on adjoint differential equations for gradient
generation. This feature makes the methods flexible as far as changes in
problem formulation are concerned. The methods have been successfully
applied to the optimization of the ARIANE V ascent trajectories and HERMES
reentry trajectories. Further developement currently under way will enable
apll-6cation to trajectory optimization. of winged launchers with airbre-
athing engines, for instance HOTOL or SA NGER.

A numerical optimization method based on the multiple shooting technique
has been used to investigate the possibility of extracting energy from
wind shear and transferring it to the airplane, 120). The possibility of
extracting energy from non-uniform, horizontal air stream (wind shear) was
first observed with the flight of birds and considered as a means for usein the flight of sailplanes. In this study the determination of the tra-
jectories for maximum energy extraction has been formulated as an optimal

control problem. Basic characteristics of optimal trajectories has beenobtained together with details about the geometric properties of the
flight path and the corresponding speeds histories. The wind shear level
necessary for maintaining continuous flight has been evaluated as function
of the aerodynamic efficiency and wing loading. As expected, aerodynamic
efficiency is a factor having a great effect. By contrast, wing loading is
found to be of minor importance for the wind shear problem considered.

CONCLUDING REMAkRKS

Without claim to completeness, some recent progresses achieved in deve-
lopment and application of numerical optimization methods are presented.
With emphasis lying on aeronautical problems, the activities in the field
of aerodynamic desin by CFD methods, structural optimization and determi-
nation ofo optimal fight trajectories are surveyed. while the capabilities
in structural and flight control optimization appear to be adequate to the
current demand in these fields, the potential of the CFD analysis codes
seems to have not be completely transferred to the design methodology. In
particular, the application of time-consuming flow solvers solving the
uler and Navier-Stokes equations to optimization of complete three-dimen-

sional airplane configurations and of the aerothermodynamic character-
istics of hypersonic configurations is currently hampered by the lack of
efficient optimization strategies. Current practice of coupling flow ana-
lysis codes to optimization algorithms in a black-box mode results in



computing time levels unaffordable for three-dimensional problems. On the
contrary, as the survey of the optimal flight control methods revealed,
efficiency can at best be obtained by tailoring the optimization algo-
rithms on the specific problems. Based on this experience, future efforts
for improving the CFD design capabilities will require a tighter coopera-
t.on between mathematicians and engineers for development of strongly
coupled analysis/optimization algorithm. Adaption of existing optimal
control techniques to CFD problems deserves careful consideration.
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